Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)CA tại C
=>CB\(\perp\)AF tại C
Xét tứ giác BHCF có \(\widehat{BHF}=\widehat{BCF}=90^0\)
nên BHCF là tứ giác nội tiếp
=>B,H,C,F cùng thuộc một đường tròn
Nếu cả 2 đều khác 0 thì em thích tìm theo x hay theo y cũng được, đều đúng
Nhưng thường người ta hay tìm y theo x hơn
Mình giải thích từ dấu tương đương 2 nha.
\(\dfrac{2x\left(x-2\right)+2x}{2x\left(x-1\right)\left(x-2\right)}=\dfrac{3\left(x-1\right)\left(x-2\right)}{2x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{2x^2-4x+2x}{2x\left(x-1\right)\left(x-2\right)}-\dfrac{3\left(x-1\right)\left(x-2\right)}{2x\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-2x-3\left(x^2-2x-x+2\right)}{2x\left(x-1\right)\left(x-2\right)}=0\)
Tới đây phải khử mẫu pt bằng cách lấy mẫu \(2x\left(x-1\right)\left(x-2\right)\) nhân với 0 bên vế phải thì pt mới đơn giản để giải tiếp được.
\(\Leftrightarrow2x^2-2x-3x^2+6x+3x-6=0\)
\(\Leftrightarrow2x^2-2x=3x^2-9x+6\)
Tới đây là ra được dấu tương đương 3 rồi đó.
1: Ta có: ΔOEF cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)EF
Xét tứ giác OIMP có \(\widehat{OIP}=\widehat{OMP}=90^0\)
nên OIMP là tứ giác nội tiếp
2: Xét ΔOMP vuông tại M có MH là đường cao
nên \(OH\cdot OP=OM^2=OF^2\)
=>\(\dfrac{OH}{OF}=\dfrac{OF}{OP}\)
Xét ΔOHF và ΔOFP có
\(\dfrac{OH}{OF}=\dfrac{OF}{OP}\)
\(\widehat{HOF}\) chung
Do đó: ΔOHF~ΔOFP
10.C
11.B
10:
\(a+b=50^0+40^0=90^0\)
=>\(sina=cosb;sinb=cosa;tana=cotb;cota=tanb\)
=>sina=cosb
=>Chọn C
11:
Xét ΔABC vuông tại A có \(AC=BC\cdot sinB\)
=>\(AC=12\cdot sin30=6\)
=>Chọn B