K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi độ dài quãng đường AB là x

Theo đề, ta có phương trình: x/30-x/40=1/2

hay x=60

a: Khi a=1 thì pt sẽ là \(\dfrac{x+1}{1-x}+\dfrac{x-1}{1+x}=\dfrac{1\cdot\left(3+1\right)}{1^2-x^2}\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\)

=>4x=4

hay x=1(loại)

b: Vì x=1 thì \(a\in\varnothing\)

nên không có giá trị nào của a để pt nhận x=1 là nghiệm

7 tháng 11 2021

\(a,\Leftrightarrow x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=-\dfrac{3}{4}\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc>=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

\(B=\dfrac{2x}{x-1}+\dfrac{5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}\cdot\dfrac{2\left(x+1\right)}{-5\left(x-1\right)}=\dfrac{2x}{x-1}-2=\dfrac{2x-2x+2}{x-1}=\dfrac{2}{x-1}\)

Xét ΔPMN có PQ là đường phân giác

nên MQ/MP=NQ/NP

hay MQ/6,2=NQ/8,7

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{MQ}{6.2}=\dfrac{NQ}{8.7}=\dfrac{MQ+NQ}{6.2+8.7}=\dfrac{12.5}{14.9}=\dfrac{125}{149}\)

=>MQ=775/149(cm); NQ=2175/298(cm)

5 tháng 3 2022

a, Xét tam giác AMN và tam giác ABC có 

^A _ chung 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{2,5}{7,5}=\dfrac{3}{9}=\dfrac{1}{3}\)

Vậy tam giác AMN ~ tam giác ABC (c.g.c) 

b, Ta có tỉ số đồng dạng : \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Rightarrow MN=\dfrac{AM.BC}{AB}=4cm\)

5 tháng 3 2022

a.Ta có:

\(\dfrac{AM}{AB}=\dfrac{2,5}{7,5}=\dfrac{1}{3};\dfrac{AN}{AC}=\dfrac{3}{9}=\dfrac{1}{3}\)

\(\Rightarrow\)MN//BC ( Ta-lét đảo )

=> Tam giác AMN đồng dạng tam giác ABC

b. Ta có: MN//BC ( cmt )

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

\(\Leftrightarrow\dfrac{1}{3}=\dfrac{MN}{12}\)

\(\Leftrightarrow3MN=12\)

\(\Leftrightarrow MN=4cm\)

a: AE=1/3AB=1/3x6=2(cm)

b: Xét ΔABC có EF//BC

nên AE/AB=AF/AC

c: Ta có: AE/AB=AF/AC

nên AF/8=1/3

=>AF=8/3(cm)