Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(9.9.9.9.9=9^5\)
b, \(6.6.6.6.6.2.3=6.6.6.6.6.6=6^6\)
c, \(4.8.2.2.2=\left(4.2.2\right)\left(8.2\right)=16.16=16^2\)
d, \(11.11.11.11.11.11.11=11^7\)
e, \(100.10.10.10.2.5=10^2.10^3.10=10^6\)
f, \(1000.100.10000=10^3.10^2.10^4=10^9\)
Bài 2 :
a, \(5^3=125\)
b, \(11^2=121\)
c,
xem ai thông minh, tinh mắt nhất có thể luận ra toàn bộ đề và giúp mk giải nào!!
B5
a)\(A=\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-1\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot0\cdot\left(1-\dfrac{2011}{2010}\right)\\ =0\)
b)
\(A=\dfrac{1946}{1986}=\dfrac{1986-40}{1986}=\dfrac{1986}{1986}-\dfrac{40}{1986}=1-\dfrac{40}{1986}\\ B=\dfrac{1968}{2008}=\dfrac{2008-40}{2008}=\dfrac{2008}{2008}-\dfrac{40}{2008}=1-\dfrac{40}{2008}\)
Vì \(\dfrac{40}{1986}>\dfrac{40}{2008}\) nên \(1-\dfrac{40}{1986}< 1-\dfrac{40}{2008}\) hay \(A< B\)
B6
a) Đề sai
Sửa lại:
\(B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
b)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}=\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\\ B< 1-\dfrac{1}{8}\\ B< \dfrac{7}{8}\left(1\right)\)
Mà \(\dfrac{7}{8}< 1\left(2\right)\)
Từ (1) và (2) ta có \(B< 1\)
i) \(5\dfrac{8}{17}:x+\left(-\dfrac{4}{17}\right):x+3\dfrac{1}{7}:17\dfrac{1}{3}=\dfrac{4}{11}\)
\(\Rightarrow\dfrac{93}{17}:x-\dfrac{4}{17}:x+\dfrac{33}{182}=\dfrac{4}{11}\)
\(\Rightarrow\left(\dfrac{93}{17}-\dfrac{4}{17}\right):x=\dfrac{4}{11}-\dfrac{33}{182}\)
\(\Rightarrow\dfrac{89}{17}:x=\dfrac{365}{2002}\)
\(\Rightarrow x=\dfrac{89}{17}:\dfrac{365}{2002}=\dfrac{178178}{6205}\)
j) \(\dfrac{17}{2}-\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=\dfrac{17}{2}-\left(-\dfrac{7}{4}\right)=\dfrac{41}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=-\dfrac{41}{4}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x=11\Rightarrow x=\dfrac{11}{2}\\2x=-\dfrac{19}{2}\Rightarrow x=-\dfrac{19}{4}\end{matrix}\right.\)
k) \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Rightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{26}{25}-\dfrac{17}{25}=\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2\)\(=\left(-\dfrac{3}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\Rightarrow x=\dfrac{2}{5}\\x+\dfrac{1}{5}=-\dfrac{3}{5}\Rightarrow x=-\dfrac{4}{5}\end{matrix}\right.\)
l) \(-1\dfrac{5}{27}-\left(3x-\dfrac{7}{9}\right)^3=-\dfrac{24}{27}\)
\(\Rightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-32}{27}-\left(-\dfrac{24}{27}\right)=-\dfrac{8}{27}=\left(-\dfrac{2}{3}\right)^3\)
\(\Rightarrow3x-\dfrac{7}{9}=-\dfrac{2}{3}\)
\(\Rightarrow3x=-\dfrac{2}{3}+\dfrac{7}{9}=\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{1}{27}\)
j, \(\dfrac{17}{2}-\left|2x-\dfrac{3}{4}\right|=\dfrac{-7}{4}\)
\(\Rightarrow-\left|2x-\dfrac{3}{4}\right|=\dfrac{-7}{4}-\dfrac{17}{2}\)
\(\Rightarrow-\left|2x-\dfrac{3}{4}\right|=\dfrac{-41}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=\dfrac{41}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=\dfrac{-41}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{-19}{4}\end{matrix}\right.\)
k, \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Rightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow x+\dfrac{1}{5}=\pm\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=\dfrac{-3}{5}\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-4}{5}\end{matrix}\right.\)
l, \(-1\dfrac{5}{27}-\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-24}{27}\)
\(\Rightarrow-\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-19}{27}\)
\(\Rightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{19}{27}\)
\(\Rightarrow3x-\dfrac{7}{9}=\dfrac{\sqrt[3]{19}}{3}\)
\(\Rightarrow3x=\dfrac{\sqrt[3]{19}}{3}+\dfrac{7}{19}\)
\(\Rightarrow...\)
Bài 1
a) A : { 12;13;14 }
b) B : { 1;2;3;4;5 }
c) C : { 17;18;19;20;21 }
d) D : { 7;8;9;10 }
Bài 2
a) M : { 0;1;2;3;4;5;6 }
M : { x thuộc N / x < 7 }
b) P : { 22;23;24;25 }
P : { x thuộc N / 21 < x < 26 }
n=231
a: Ta có: \(\dfrac{n\left(n+1\right)}{2}=231\)
\(\Leftrightarrow n^2+n-462=0\)
\(\Leftrightarrow n^2+22n-21n-462=0\)
\(\Leftrightarrow\left(n+22\right)\left(n-21\right)=0\)
\(\Leftrightarrow n=21\)