Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔABH=ΔACK
b: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
c: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a: Xét ΔABE và ΔAME có
AB=AM
góc BAE=góc MAE
AE chung
=>ΔABE=ΔAME
=>EB=EM
b: Xét ΔEBD và ΔEMC có
góc EBD=góc EMC
EB=EM
góc BED=góc MEC
=>ΔEBD=ΔEMC
=>ED=EC
=>ΔEDC cân tại E
a) Xét tam giac ABH vuông tại H và tan giác ACH vuông tại H ta có
AB=AC ( tam giac ABC cân tại A)
AH=AH ( cạnh chung)
-> tam giac ABH= tam giac ACH ( ch-cgv)
-> BH= CH ( 2 cạnh tương ứng)
b) Xét tam giác AMB và tam giac CME ta có
AM=MC ( M là trung điểm AC)
BM=ME(gt)
goc AMB = goc CME (2 góc đối đỉnh)
=> tam giac AMB= tam giac CME (c-g-c)
-> goc BAM= góc ECM (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong nên CE//AB
c) ta có:
goc BAH= goc AKC ( 2 góc sole trong và CE//AB)
goc BAH= goc CAH ( tam giac ABH = tam giac ACH)
-> goc AKC= góc CAH
=> tam giac ACB cân tại C
d) ta có : BH=CH (cm a)
=> H là trung điểm BC
Xét tam giac ABC ta có
BM là đường trung tuyến ( M là trung diểm AC)
AH là đường trung tuyến ( H là trung điềm BC)
BM cắt AH tại G (gt)
-> G là trọng tâm tam giác ABC
-> GH=1/3 AH
-> 3GH=AH
ta có
AH+HC > AC ( bất đẳng thức trong tam giác AHC)
AH=3GH (cmt)
AC=CK( tam giac ACK cân tại C)
-> 3GH +HC >CK
A) Xét hai tam giác vuông :
AB = AC ( gt )
AH chung
=> BẰNG NHAU
=> BH = CH ( vì hai cạnh tương ứng )
B) K BK
C) PHẢI CHỨNG MINH HAI CẠNH BẰNG NHAU
mình thấy đề nó sai sai
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
kẻ BH với CK như nào cũng được hay BH⊥AC;CK⊥AB hay H là trung điểm của AC,K là trung điểm của AB
Chưa có giả thiết gì hết mà bạn