Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(\frac{1}{5}-\frac{2}{15}\right)=-4\frac{3}{8}\)
\(2x\left(\frac{3}{15}-\frac{2}{15}\right)=\frac{-35}{8}\)
\(2x=\frac{-35}{8}:\frac{1}{15}\)
\(2x=\frac{-35}{8}.\frac{15}{1}\)
\(2x=\frac{-525}{8}\)
\(x=\frac{-525}{8}:2\)
\(x=\frac{-525}{8}.\frac{1}{2}\)
\(x=\frac{-525}{16}\)
hok tốt!
1/
\(A\)dương \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-\frac{1}{2}\right)>0\\x-\frac{4}{5}>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0+\frac{1}{2}\\x>0+\frac{4}{5}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{4}{5}\end{cases}}\Leftrightarrow x>0,8\)
2/ Làm tương tự nhưng có 2 trường hợp nên bạn làm từng trường hợp nhé ..!
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
cho 3 k
\(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{10^2}\right)\)
=> \(\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)\)\(...\left(1-\frac{1}{10}\right)\cdot\left(1+\frac{1}{10}\right)\)
=> \(\left(1-\frac{1}{2}\right)\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\cdot\cdot\frac{9}{10}\cdot\frac{10}{11}\)
=> \(\frac{1}{2}\cdot\frac{3\cdot2\cdot4\cdot\cdot\cdot9\cdot10}{2\cdot3\cdot3\cdot\cdot\cdot10\cdot11}=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)
Chúc bn học tốt !
cho mk 3 k nha bn
thanks nhìu
bài này mk ko copy, ko chép mạng, tự nghĩ mất 6 phút .
có công thức rùi nha !
chúc bn học tốt
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2-\left(\frac{1}{4}\right)^2=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{2}{3}+\frac{1}{4}\right)\left(\frac{1}{x}-\frac{2}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{5}{12}\right)\left(\frac{1}{x}-\frac{11}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{5}{12}=0\\\frac{1}{x}-\frac{11}{12}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{5}{12}\\\frac{1}{x}=\frac{11}{12}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}\)
Vậy....
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow x=\frac{11}{12}\)
bạn có chép sai đề ko
a)\(\left(x+\frac{1^2}{4}\right)=\frac{4}{9}\)
\(x+\frac{1}{16}=\frac{4}{9}\)
\(x=\frac{4}{9}-\frac{1}{16}\)
\(x=\frac{55}{144}\)
b)\(\left(2x-1^2\right)=16\)
\(2x-1=16\)
\(2x=16+1\)
\(2x=17\)
\(x=17:2=\frac{17}{2}\)