Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải trên phép trên =>X=3-1=2
ta có [y-2]+1=1
=>y=2 đáp số:y=2 , x=2
a. ta có 2y+3 là số lẻ nên
\(\left|2y+3\right|\in\left\{1,3\right\}\)
\(TH1:\left|2y+3\right|=1\Rightarrow\hept{\begin{cases}\left|2y+3\right|=1\\\left|x+5\right|=14\end{cases}}\) vậy (x,y) = (-19,-2) , (-19,-1) (9,-2) , (9,-1)
TH2: \(\left|2y+3\right|=3\Rightarrow\hept{\begin{cases}\left|2y+3\right|=3\\\left|x+5\right|=6\end{cases}}\)Vậy (x,y) =( -11,-1) , (-11,0) , (1,-1), (1,0)
b. ta có \(\left(2x\right)^2+\left|y+3\right|=9\)
\(TH1:\left|2x\right|=2\Rightarrow\hept{\begin{cases}\left|2x\right|=2\\\left|y+3\right|=5\end{cases}}\) vậy (x,y) = (-1,-8) ,(-1,2) ,(1,-8), (1,2)
\(TH2:\left|2x\right|=0\Leftrightarrow\hept{\begin{cases}\left|2x\right|=0\\\left|y+3\right|=9\end{cases}}\)vậy (x,y=(0,-12) , (0.6)
Đề bài thiếu bạn nhé, có lẽ là x và y là các số nguyên.
kẻ đoạn BK song song zới Ax là đc :)(=> nó cũng song song xới Cy)
Từ đó => \(_{\widehat{xAB}+\widehat{ABK}=180}\)\(=>\widehat{ABK}=180-115=65\)
mà \(ABK+KBC=ABC=90=>KBC=25\)
mà BK song song zới CY
=> \(KBC+BCy=180=>BCy=180-25=155\)
Kẻ đường thẳng Bz // Ax
Mà Ax // Cy
=> Bz // Cy
Ta có Bz // Ax
=> góc BAx + ABz = 180o ( hai góc trong cùng phía )
=> góc ABz = 180o - góc BAx = 65o
Ta lại có Bz // Cy ( chứng minh trên )
=> ABz + BCy = 180o ( hai góc trong cùng phía )
=> BCy = 180o - góc ABz = 180o - 65o = 115o
Tự kẻ hình nha mình ngại kẻ lắm
\(B=\left|x+1\right|+\left|x-4\right|+\left|2x-5\right|\ge\left|2x-3\right|+\left|2x-5\right|=\left|2x-3\right|+\left|5-2x\right|\)
\(\ge\left|2x-3+5-2x\right|=\left|2\right|=2\)
Dấu ''='' xảy ra khi \(\left(x+1\right)\left(4-x\right)\ge0;\left(2x-3\right)\left(5-2x\right)\ge0\)
\(-1\le x\le4;\frac{3}{2}\le x\le\frac{5}{2}\Rightarrow-1\le x\le4\)
Vậy GTNN của B bằng 2 tại -1 =< x =< 4
3x . ( 32 + 5 ) = 378
3x . 14 = 378
3x = 378 : 14
3x = 27
3x = 33
=> x = 3
\(13^{\left(x-2\right)\left(2x-5\right)}=1=13^0\)
\(\Rightarrow\left(x-2\right)\left(2x-5\right)=0\Leftrightarrow x=2;x=\frac{5}{2}\)
Ta có với mọi \(a\in Z\)thì \(a^0=1\)
\(\Rightarrow13^{\left(x-2\right)\left(2x-5\right)}=13^0=1\)
\(\Rightarrow\left(x-2\right)\left(2x-5\right)=0\)
\(\Rightarrow x-2=0\)hoặc \(2x-5=0\)
\(TH1:\)\(x-2=0\)
\(\Rightarrow x=2\)
\(TH2:\)\(2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\frac{5}{2}\)
Vậy \(x\in\left\{2;\frac{5}{2}\right\}\)
ta có \(\left(x-1\right)\left(3-x\right)\le\left(\frac{x-1+3-x}{2}\right)^2=1\le\left|y-2\right|+1\)
Dấu bằng xart ra khi:
\(\hept{\begin{cases}x-1=3-x\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)Vậy phương trình có nghiệm duy nhất (2,2)
x=3-1
y=0+2