Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sau khi Minh rút thẻ số 9 thì trong hộp còn các thẻ ghi số: 0; 1; 2; 3; 4; 5; 6; 7; 8; 10
Để Hưng thắng thì Hưng phải rút được thẻ số 10
Xác suất Hưng rút được thẻ số 10 là 1/9
b) Khi Minh rút được thẻ số 0 thì Hưng sẽ rút được thẻ lớn hơn 0
⇒ Hưng luôn thắng
Vậy xác suất Hưng thua là 0
Các thẻ mang số nguyên tố là các thẻ có số 2;3;5;7
\(n_{\Omega}=10\)
A: "Các thẻ có mang số trên thẻ là số nguyên tố"
\(\rightarrow n_A=4\\ \Rightarrow P_A=\dfrac{n_A}{n_{\Omega}}=\dfrac{4}{10}=\dfrac{2}{5}\)
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Trong các số từ 1 đến 52 có ba số chia 17 dư 2 là: 2, 19, 36. Trong 3 số trên, có một số chia 3 dư 1 là 19.
Vậy có một kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 17 dư 2 và chia cho 3 dư 1” là: 19.
Vì thế, xác suất của biến cố trên là: \(\dfrac{1}{{52}}\)
b) Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5” là: 5, 15, 25, 35, 45, 50, 51, 52.
Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{52}} = \dfrac{2}{{13}}\)
a) A = {1; 2; 4; 7; 11}
b) Xác suất của biến cố M:
2 : 5 . 100% = 40%
Xác suất của biến cố N:
3 : 5 . 100% = 60%
Lời giải:
a. $A=\left\{1;2;4;7;11\right\}$
b.
Rút ngẫu nhiên 1 thẻ từ hộp, có 5 khả năng (1,2,4,7,11)
Rút được thẻ ghi số chẵn, tức là rút phải thẻ $2,4$ (2 khả năng)
Rút được thẻ ghi số nguyên tố, tức là rút phải thẻ $2,7,11$ (3 khả năng)
Xác suất để biến cố M xảy ra: $\frac{2}{5}$
Xác suất để biến cố N xảy ra: $\frac{3}{5}$
A={0;1;2;3;...;9}
a: Không có số nào lớn hơn 9 trong A nên P(A)=0
b: Không có số nào nhỏ hơn 0 trong B nên P(B)=0