Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{2011+2012}{2012+2013}=\frac{2011+2012}{4025}\)
Ta có:
\(\frac{2011}{2012}>\frac{2011}{4025}\)
\(\frac{2012}{2013}>\frac{2012}{4025}\)
=> \(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{4025}+\frac{2012}{4025}\)
=> \(B>\frac{2011+2012}{4025}\)
=>\(B>A\)
Ta có : \(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Mà \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
Cộng vế theo vế, ta có : \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
Ta có:
2010/2011 >2010/2011+2012+2013. ;2011/2012 >2011/2011+2012+2013 .;2012/2013 >2012/2011+2012+2013 ->2010/2011+2011/2012+2012/2013 >2010+2011+2012/2011+2012+2013. Vậy P > Q
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)
Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\) ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)
\(\Rightarrow B>A\)
Gọi 2011 là a
2012 là b;2013 là c
=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)
=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)
b+c>a+c;b2+ac>bc
Vậy A>B
ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2013+2012}.\)
\(\Rightarrow A>\frac{2011}{2012+2013}+\frac{2012}{2013+2012}=\frac{2011+2012}{2012+2013}=B\)
....
Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
CỘNG VẾ THEO VẾ,TA CÓ:
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)
\(\Rightarrow A>B\)
Vậy A>B
Ta có
\(\frac{A^{2011}}{A^{2012}}=\frac{A^{2012}}{A^{2103}}=\frac{A}{A^2}\)
=> \(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}=\frac{2A}{A^2}\)
\(\frac{A^{2011+2012}}{A^{2012+2013}}=\frac{A^{4023}}{A^{4025}}=\frac{1}{A^2}\)
=> \(\frac{A^{2011+2012}}{A^{2012+2013}}< \frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
?????????????????????????????????
Cách 1
\(A=\frac{2011+2012}{2012+2013}\)
\(A=\frac{2011+1}{1+2013}\)
\(A=\frac{2012}{2014}\)
\(B=\frac{2011}{2012}+\frac{2012}{2013}\)
\(B=\frac{2011+2012}{2012+2013}\)
\(B=\frac{2011+1}{1+2013}\)
\(B=\frac{2012}{2014}\)
Vậy A và B bằng nhau vì cùng bằng \(\frac{2012}{2014}\)
Cách 2
A và B bằng nhau vì đều có hai phân số 2011/2012 + 2012/2013