Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) `sin^2 3x=1`
`<=> (1-cos6x)/2=1`
`<=> 1-cos6x=2`
`<=> cos6x=-1`
`<=> 6x=π +k2π`
`<=>x=π/6 +k π/3 ( k \in ZZ)`
c) `tan^2 2x=3`
`<=> (1-cos4x)/(1+cos4x)=3`
`<=> 1-cos4x=3+3cos4x`
`<=>cos4x = -1/2`
`<=>4x= \pm (2π)/3 +k2π`
`<=>x = \pm π/6 + k π/2 (k \in ZZ)`
3.
\(u_2=\dfrac{1}{2-u_1}=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)
\(u_3=\dfrac{1}{2-u_2}=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}\)
\(u_4=\dfrac{1}{2-\dfrac{3}{4}}=\dfrac{4}{5}\)
4.
\(u_1=\dfrac{2^{1+1}+1}{2^1}=\dfrac{5}{2}\)
\(u_3=\dfrac{2^4+1}{2^3}=\dfrac{17}{8}\)
\(u_5=\dfrac{2^6+1}{2^5}=\dfrac{65}{32}\)
5. Đề bị khuất
1.
a, \(sin2x-\sqrt{3}cos2x=-1\)
\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=-\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{3\pi}{4}+k\pi\end{matrix}\right.\)
Do tổng các hệ số thứ 1,2,3 là 46 nên ta có:\(C_n^0+C_n^1+C_n^2=46\)
\(\Leftrightarrow1+\dfrac{n!}{1!\left(n-1\right)!}+\dfrac{n!}{2!\left(n-2\right)!}=46\)
\(\Leftrightarrow1+n+\dfrac{\left(n-1\right)n}{2}=46\)
\(\Leftrightarrow n^2+n-90=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=9\\n=-10\left(loai\right)\end{matrix}\right.\)
Khai triển biểu thức: \(\left(x+\dfrac{1}{x}\right)^9\)
Hạng tử thứ k+1 trong biểu thức trên
\(\left(x+\dfrac{1}{x}\right)^9=C_9^{k+1}+\left(x^2\right)^{10-k}.\left(\dfrac{1}{x}\right)^{k+1}\)
đến đây mình chịu rùi hjhj b nào làm được giúp b kia với
Tất cả k dưới đây đều là \(k\in Z\)
6.
\(\Leftrightarrow\sqrt{3}cot\left(3x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow cot\left(3x-\dfrac{\pi}{3}\right)=\dfrac{1}{\sqrt{3}}\)
\(\Leftrightarrow cot\left(3x-\dfrac{\pi}{3}\right)=cot\left(\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow3x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow3x=\dfrac{2\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)
7.
\(\Leftrightarrow\sqrt{3}tan\left(3x-15^0\right)=-1\)
\(\Leftrightarrow tan\left(3x-15^0\right)=-\dfrac{1}{\sqrt{3}}\)
\(\Leftrightarrow tan\left(3x-15^0\right)=tan\left(-30^0\right)\)
\(\Leftrightarrow3x-15^0=-30^0+k180^0\)
\(\Leftrightarrow3x=-15^0+k180^0\)
\(\Leftrightarrow x=-3^0+k60^0\)
Giải thích các bước giải:
sin 2x=cos xsin 2x=cos x
⇔sin 2x=sin (π2−x)⇔sin 2x=sin (π2-x)
⇔⇔ ⎡⎢⎣2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z)[2x=π2−x+k2π (k∈Z)2x=π−π2+x+k2π (k∈Z)
⇔⇔ ⎡⎢⎣3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)[3x=π2+k2π (k∈Z)x=π2+k2π (k∈Z)
⇔⇔ ⎡⎢ ⎢⎣x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z)[x=π6+k2π3 (k∈Z)x=π2+k2π (k∈Z)
Vậy S={π6+k2π3 (k∈Z),π2+k2π (k∈Z)
1: \(=lim\left(\dfrac{\dfrac{3}{n}-\dfrac{7}{n^2}+\dfrac{5}{n^3}}{4+\dfrac{1}{n^2}+\dfrac{1}{n^3}}\right)=0\)
2: \(=lim\left(\dfrac{2-\dfrac{1}{n^3}+\dfrac{5}{n^4}}{3+\dfrac{1}{n^2}-\dfrac{7}{n^4}}\right)=\dfrac{2}{3}\)
3: \(=lim\left(\dfrac{4+\dfrac{1}{n^2}+\dfrac{7}{n^3}}{\dfrac{2}{n}-\dfrac{1}{n^2}+\dfrac{5}{n^3}}\right)=+\infty\)
4: \(=lim\left(\dfrac{\left(\dfrac{4}{5}\right)^n+3}{2-\left(\dfrac{3}{5}\right)^n}\right)=\dfrac{3}{2}\)
5: \(=lim\left(\dfrac{2\cdot\left(\dfrac{3}{5}\right)^n+4}{3\cdot\left(\dfrac{4}{5}\right)^n+2\cdot\left(\dfrac{3}{5}\right)^n}\right)=+\infty\)
6: \(=lim\left(\dfrac{\sqrt{2+\dfrac{1}{n}-\dfrac{5}{n^2}}+3}{4-\dfrac{1}{n}}\right)=\dfrac{3}{4}\)
7: \(=lim\left(\dfrac{\sqrt{\dfrac{2}{n^2}+\dfrac{1}{n^3}+\dfrac{1}{n^4}}-\dfrac{1}{n}}{4+\dfrac{1}{n}-\dfrac{3}{n^2}}\right)=+\infty\)
\(8,lim\dfrac{3n^2+n-2}{4n^3+n+1}\)
\(=lim\dfrac{\dfrac{3n^2}{n^3}+\dfrac{n}{n^3}-\dfrac{2}{n^3}}{\dfrac{4n^3}{n^3}+\dfrac{n}{n^3}+\dfrac{1}{n^3}}\)
\(=lim\dfrac{\dfrac{3}{n}+\dfrac{1}{n^2}-\dfrac{2}{n^3}}{4+\dfrac{1}{n^2}+\dfrac{1}{n^3}}\)
\(=\dfrac{0}{4}\)
\(=0\)
\(9,lim4n^3+2n-5\)
\(=lim\left(\dfrac{4n^3}{n^3}+\dfrac{2n}{n^3}-\dfrac{5}{n^3}\right)\)
\(=lim\left(4+\dfrac{2}{n^2}-\dfrac{5}{n^3}\right)\)
\(=4\)
\(10,lim\left(n^2-n+1\right)\)
\(=lim\left(\dfrac{n^2}{n^2}-\dfrac{n}{n^2}+\dfrac{1}{n^2}\right)\)
\(=lim\left(1-\dfrac{1}{n}+\dfrac{1}{n^2}\right)\)
\(=1\)
\(11,lim\left(-2n^3+n+5\right)\)
\(=lim\left(-\dfrac{2n^3}{n^3}+\dfrac{n}{n^3}+\dfrac{5}{n^3}\right)\)
\(=lim\left(-2+\dfrac{1}{n^2}+\dfrac{5}{n^3}\right)\)
\(=-2\)
\(12,lim\left(-3n^4+n+7\right)\)
\(=lim\left(-\dfrac{3n^4}{n^4}+\dfrac{n}{n^4}+\dfrac{7}{n^4}\right)\)
\(=lim\left(-3+\dfrac{1}{n^3}+\dfrac{7}{n^4}\right)\)
\(=-3\)