K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Ta có: \(\overline {{x_5}}  = 57,96,\overline {{x_6}}  = 272,04\)

+) Vậy phương sai của mẫu (5) và (6) là:

\(s_{\left( 5 \right)}^2 = \frac{{{{\left( {55,2 - \overline {{x_5}} } \right)}^2} + {{\left( {58,8 - \overline {{x_5}} } \right)}^2} + {{\left( {62,4 - \overline {{x_5}} } \right)}^2} + {{\left( {54 - \overline {{x_5}} } \right)}^2} + {{\left( {59,4 - \overline {{x_5}} } \right)}^2}}}{5} = 9,16\)

 \(s_{\left( 6 \right)}^2 = \frac{{{{\left( {271,2 - \overline {{x_6}} } \right)}^2} + {{\left( {261 - \overline {{x_6}} } \right)}^2} + {{\left( {276 - \overline {{x_6}} } \right)}^2} + {{\left( {282 - \overline {{x_6}} } \right)}^2} + {{\left( {270 - \overline {{x_6}} } \right)}^2}}}{5} = 48,33\)

Nhận xét: Cự li chạy 500m có kết quả đồng đều hơn.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Số bạn trong lớp là \(n = 5 + 7 + 10 + 8 + 6 = 36\)

Thời gian chạy trung bình cự li 100 m của các bạn trong lớp là

\(\bar X = \frac{{5.12 + 7.13 + 10.14 + 8.15 + 6.16}}{{36}}\)

Chú ý

Bài toán này cho dưới dạng bảng tần số nên cần tính theo công thức trên.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Kết quả trung bình của 2 bạn là bằng nhau: \(\overline {{x_H}}  = \overline {{x_T}}  = 2,5\) (m)

b) +) Phương sai mẫu số liệu thống kê của bạn Hùng và Trung là:

\(s_H^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2} + {{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,008\)

\(s_T^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,004\)

+) 0,004 < 0,008 nên ta kết luận: Kết quả nhảy xa của bạn Trung ổn định.

7 tháng 3 2017

Chọn A.

Giả sử các giá trị của mẫu số liệu là a; b; c; d với  0 < a < b < c < d và a; b; c;d là số tự  nhiên.

+ Ta có 

Mà số trung bình là 6 nên a + b + c + d = 24

Suy ra a + d = 14

+ Ta có  hay  1 < b < 5 mà b  là số tự nhiên nên b = 2; 3; 4

+ Nếu b = 2  thì c = 8, mà 0 < a < b; a là  số tự nhiên nên a = 1 và d = 13

Khi đó các giá trị của mẫu số liệu là 1; 2; 8; 13

+ Nếu b = 3 thì c = 7, mà 0 < a < b; a số tự nhiên nên có 2 khả năng xảy ra:  a = 1 ; d = 13 hoặc a = 2 ; d = 12

Khi đó có hai mẫu số liệu thỏa đề bài có giá trị là 1;3;7;13 và 2;3;7;12

+ Nếu b = 4 thì c = 6, mà 0 < a < b; a là số tự nhiên nên có 3 khả năng xảy ra:

a = 1; d = 13 hoặc a = 2 ; d = 12 hoặc a = 3 ; d = 11

Khi đó có ba mẫu số liệu thỏa đề bài có giá trị là 1;4;6;13 hoặc  2;4;6;12 hoặc  3;4;6;11

Suy ra với mẫu số liệu có các giá trị là 3;4;6;11 thì hiệu của giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đạt giá trị nhỏ nhất.

16 tháng 12 2023

Cho mình hỏi tại sao b>1 và 10>2b vậy

12 tháng 7 2019

Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt)  nên có tất cả 20 vận động viên tham gia chạy.

Vậy kích thước mẫu là 20

Chọn B.

21 tháng 1 2017

Chọn B.

Điều tra thời gian hoàn thành một sản phẩm của 12 công nhân nên kích thước mẫu là 22.

26 tháng 7 2019

Trong mẫu số liệu trên; các giá trị 15; 13; 16  đều xuất hiện nhiều nhất – là 3 lần.

Do đó; mốt của mẫu số liệu trên là :  15; 13; 16

Chọn D

2 tháng 6 2017

Các đỉnh của đường gấp khúc tần số có tọa độ là ( c i ;   n i ), với c i  là giá trị đại diện của lớp thứ i, n i   là tần số của lớp thứ i. Từ đó suy ra: các đỉnh của đường gấp khúc tần số là các trung điểm của các cạnh phía trên của các cột (các hình chữ nhật) của biểu đồ tần số hình cột

Đường gấp khúc  I 1   I 2   I 3 I 4   I 5   I 6  với  I 1 ,   I 2 ,   I 3 ,   I 4 ,   I 5 ,   I 6  lần lượt là trung điểm của các đoạn thẳng  A 1 B 1 ,   A 2 B 2 ,   A 3 B 3 A 4 B 4 ,   A 5 B 5 ,   A 6 B 6

Cho mẫu số liệu: 1 2 4 5 9 10 11a) Số trung bình cộng của mẫu số liệu trên là:A. 5.                     B. 5,5.                C.6.                   D. 6,5.b) Trung vị của mẫu số liệu trên là:A. 5.                     B. 5,5.                C. 6.                  D. 6,5.c) Tứ phân vị của mẫu số liệu trên là:A.\({Q_1}{\rm{ }} = {\rm{ }}4,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}9\) .B.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{...
Đọc tiếp

Cho mẫu số liệu: 1 2 4 5 9 10 11

a) Số trung bình cộng của mẫu số liệu trên là:

A. 5.                     B. 5,5.                C.6.                   D. 6,5.

b) Trung vị của mẫu số liệu trên là:

A. 5.                     B. 5,5.                C. 6.                  D. 6,5.

c) Tứ phân vị của mẫu số liệu trên là:

A.\({Q_1}{\rm{ }} = {\rm{ }}4,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}9\) .

B.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}11\) .

C.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}11\) .

D.\({Q_1}{\rm{ }} = {\rm{ }}2,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{Q_3} = {\rm{ }}10\) .

d) Khoảng biến thiên của mẫu số liệu trên là:

A. 5.                     B. 6.                   C. 10.                D. 11.

e) Khoảng tứ phân vị của mẫu số liệu trên là:

A. 7.                     B. 8.                   C. 9.                  D. 10.

g) Phương sai của mẫu số liệu trên là:

A.\(\sqrt {\frac{{96}}{7}} \)          B.\(\frac{{96}}{7}\)    C. 96.  D.\(\sqrt {96} \) .

h) Độ lệch chuẩn của mẫu số liệu trên là:

A.\(\sqrt {\frac{{96}}{7}} \)          B.\(\frac{{96}}{7}\)    C. 96.  D.\(\sqrt {96} \) .

1
HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

*) Sắp xếp thứ tự của mẫu số liệu theo thứ tự không giảm ta được: 1 2 4 5 9 10 11

a) Số trung bình cộng của mẫu số liệu trên là: \(\overline x  = \frac{{1{\rm{  +  }}2{\rm{  +  }}4{\rm{  +  }}5{\rm{  +  }}9{\rm{  +  }}10{\rm{  + }}11}}{7} = 6\)

b) Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 7 số liệu ( lẻ ) nên trung vị \({Q_2} = 5\)

c) Tứ phân vị của mẫu số liệu trên là:

 Trung vị của dãy 1, 2, 4 là: \({Q_1} = 2\)

Trung vị của dãy  9, 10, 11 là: \({Q_3} = 10\)

Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 2\), \({Q_2} = 5\), \({Q_3} = 10\)

d) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 11 - 1 = 10\)

e) Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 10 - 2 = 8\)

g) Phương sai của mẫu số liệu trên là: \({s^2} = \frac{{\left[ {{{\left( {1 - \overline x } \right)}^2} + {{\left( {2 - \overline x } \right)}^2} + ... + {{\left( {11 - \overline x } \right)}^2}} \right]}}{7} = \frac{{96}}{7}\)

h) Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  = \sqrt {\frac{{96}}{7}} \)

24 tháng 5 2018

Từ dãy số liệu ta có bảng phân bố tần số - tần suất ghép lớp sau đây:

 

c) Cộng các tần suất của năm lớp [500;600), [600;700), [700;800), [800;900) và [900;1000) ta được . Đáp án là B.