K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

28 tháng 5 2023

Các điều kiện xác định hợp lại sẽ là \(\left\{{}\begin{matrix}2\le x\le4\\0\le y\le2\end{matrix}\right.\)

Ta có \(8\sqrt{xy-2y}-8y+4\) \(=8\sqrt{y\left(x-2\right)}-8y+4\) \(\le4\left(y+x-2\right)-8y+4\) (BĐT AM-GM) \(=4\left(x-y\right)-4\)

Do vậy, \(\left(x-y\right)^2=8\sqrt{xy-2y}-8y+4\le4\left(x-y\right)-4\) \(\Leftrightarrow\left(x-y\right)^2-4\left(x-y\right)+4\le0\) \(\Leftrightarrow\left(x-y-2\right)^2\le0\) \(\Leftrightarrow x-y-2=0\) \(\Leftrightarrow y=x-2\), điều này cũng thỏa mãn ĐTXR của BĐT \(8\sqrt{y\left(x-2\right)}=4\left(y+x-2\right)\). Do đó, pt đầu tiên của hệ \(\Leftrightarrow y=x-2\) hay \(x=y+2\)

Thay vào pt thứ 2 của hệ, ta có 

\(2\sqrt{2y-y^2}\left(\sqrt{4-2y}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{y}\)

\(\Leftrightarrow\left(4-2y\right)\sqrt{2y}-4y\sqrt{4-2y}+2\sqrt{y\left(2-y\right)}=4y+5\sqrt{2-y}-10\sqrt{y}\)

 Mình mới làm được đến đây thôi. Mình phải đi ngủ rồi, thế nên mai mình suy nghĩ tiếp nhé.

8 tháng 12 2019

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

8 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new

e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ

thanks nhiều!

NV
13 tháng 4 2019

a/

ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=3\)

b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)

Biến đổi pt dưới:

\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)

\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)

\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))

\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)

\(\Leftrightarrow x=3y+1\)

Thế vào pt trên:

\(\left(3y+1\right)^2-5y^2-8y-3=0\)

\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)

Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn

11 tháng 4 2019

Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v

b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)

\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)

Đến đây tự giải thế vào (1)

Nguyễn Việt Lâm Giải giúp t TH2 nha!

3 tháng 6 2020

tth coi như chú chưa giải được nhé, 3GP cho bác Lâm :]]]

Mà mình có được tick GP đouu :>

2 tháng 6 2020

ĐK: \(x\ge2,y\ge2\)

Chú ý \(x^2+xy+2y^2\ge x^2+xy+2y^2-\frac{7}{16}\left(x-y\right)^2=...\)

(Đẳng thức xảy ra khi x = y)

Từ đó$:$ \(\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)

$\geqq \frac{1}{4} \Big[(3x+5y) +(5x+3y)\Big]$

$=2(x+y)=\text{VP(1)}$

Đẳng thức xảy ra khi x = y.

Thay vào, PT(2) tương đương với$:$

\(\left(8x-6\right)\sqrt{x-1}=\left(2+\sqrt{x-2}\right)\left(x+4\sqrt{x-2}+3\right)\)

Đặt \(\sqrt{x-2}=a\left(a\ge0\right)\Rightarrow x=a^2+2\)

PT \(\Leftrightarrow\left(8a^2+10\right)\sqrt{a^2+1}=\left(2+a\right)\left(a^2+4a+5\right)\)

\(\Leftrightarrow\) $a (-4 + 3 a) (65 + 56 a + 86 a^2 + 24 a^3 + 21 a^4) =0$

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=\frac{4}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=\frac{34}{9}\end{matrix}\right.\) (TMĐK)

Vậy....