K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)                  

 để 2M có giá trị nguyên thì \(2\sqrt{x}+2⋮\sqrt{x}+2\)(1)

Lại có \(2\sqrt{x}+4⋮\sqrt{x}+2\)(2)

\(\Rightarrow2⋮\sqrt{x}+2\)(lấy (2) trừ (1))

mà \(\sqrt{x}+2\ge2\)

\(\Rightarrow\sqrt{x}+2=2\)   ( vì x thuộc Z)

=> x=0

21 tháng 6 2019

Ta có: \(M=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)  ( ĐK: \(x\ge0\) )

\(\Leftrightarrow2M=\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=\frac{2\sqrt{x}+4-2}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=\frac{2\sqrt{x}+4}{\sqrt{x}+2}-\frac{2}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=2-\frac{2}{\sqrt{x}+2}\)

Để 2M có giá trị nguyên <=> \(2⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}+2\in\left\{-1;-2;1;2\right\}\)

Vì \(x\ge0\Leftrightarrow\sqrt{x}+2\ge2\)

\(\Rightarrow\sqrt{x}+2=2\)

\(\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

Vậy khi x = 0 thì 2M có giá trị nguyên! 

Chúc bạn học tốt! :))

8 tháng 7 2021

\(a,A=\frac{2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{x-4\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(A=\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(b,A=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)

để A nguyên \(5⋮\sqrt{x}-3\)

lập bảng ra đc 

\(x=\left\{2\right\}\)

Để A nguyên thì \(2\sqrt{x}+3⋮3\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+9⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}-1\in\left\{-1;1;11\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;12\right\}\)

hay \(x\in\left\{0;16\right\}\)

4 tháng 9 2021
25 tháng 8 2020

a) đk: \(x\ge0\)

Ta có: 

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên

Ta có: \(A=\frac{2\sqrt{x}+10}{\sqrt{x}-3}=\frac{\left(2\sqrt{x}-6\right)+16}{\sqrt{x}-3}=2+\frac{16}{\sqrt{x}-3}\)

Để A nguyên => \(\frac{16}{\sqrt{x}-3}\inℤ\Rightarrow\sqrt{x}-3\inƯ\left(16\right)\)

Mà \(\sqrt{x}-3\ge-3\left(\forall x\right)\Rightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4;8;16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7;12;20\right\}\)

\(\Rightarrow x\in\left\{1;4;16;25;49;144;400\right\}\)

25 tháng 8 2020

b) đk: \(x\ge0\)

Ta có:

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên

Ta có: \(B=\frac{\sqrt{x}+8}{2\sqrt{x}+1}\Rightarrow2B=\frac{2\sqrt{x}+16}{2\sqrt{x}+1}=1+\frac{15}{2\sqrt{x}+1}\)

Để 2B nguyên => \(\frac{15}{2\sqrt{x}+1}\inℤ\Rightarrow2\sqrt{x}+1\inƯ\left(15\right)\)

Mà 1 lẻ nên để B nguyên => \(\frac{15}{2\sqrt{x}+1}\) lẻ, mặt khác: \(2\sqrt{x}+1\ge1\left(\forall x\right)\)

=> \(2\sqrt{x}+1\in\left\{1;3;5;15\right\}\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;14\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;2;7\right\}\Rightarrow x\in\left\{0;1;4;49\right\}\)

17 tháng 10 2020

ĐKXĐ : x > 0 ; x ≠ 1 ; x ≠ 4

a) \(A=\left(1-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x-1}}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) Với x = \(11-6\sqrt{2}\)

\(A=\frac{\sqrt{11-6\sqrt{2}}-3}{\sqrt{11-6\sqrt{2}}-2}\)

\(=\frac{\sqrt{2-6\sqrt{2}+9}-3}{\sqrt{2-6\sqrt{2}+9}-2}\)

\(=\frac{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-3}{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-2}\)

\(=\frac{\sqrt{\left(\sqrt{2}-3\right)^2}-3}{\sqrt{\left(\sqrt{2}-3\right)^2}-2}\)

\(=\frac{\left|\sqrt{2}-3\right|-3}{\left|\sqrt{2}-3\right|-2}\)

\(=\frac{3-\sqrt{2}-3}{3-\sqrt{2}-2}=\frac{-\sqrt{2}}{1-\sqrt{2}}\)

c) Ta có : \(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}=\frac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\frac{1}{\sqrt{x}-2}\)

Để A nguyên => \(\frac{1}{\sqrt{x}-2}\)nguyên

=> \(1⋮\sqrt{x}-2\)

=> \(\sqrt{x}-2\inƯ\left(1\right)=\left\{\pm1\right\}\)

=> \(\sqrt{x}\in\left\{3;1\right\}\)

=> \(x=9\)( không nhận x = 1 do ĐKXĐ )

d) Để A = -2

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}=-2\)( x > 0 ; x ≠ 1 ; x ≠ 4 )

=> \(\sqrt{x}-3=-2\sqrt{x}+4\)

=> \(\sqrt{x}+2\sqrt{x}=4+3\)

=> \(3\sqrt{x}=7\)

=> \(9x=49\)( bình phương hai vế )

=> \(x=\frac{49}{9}\)( tm )

e) Để A có giá trị âm

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)

Xét hai trường hợp :

1.\(\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x< 4\end{cases}}\)( loại )

2. \(\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x>4\end{cases}}\Leftrightarrow4< x< 9\)

Vậy với 4 < x < 9 thì A có giá trị âm

f) Để A < -2

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< -2\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+2< 0\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}-4}{\sqrt{x-2}}< 0\)

=> \(\frac{3\sqrt{x}-7}{\sqrt{x}-2}< 0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}3\sqrt{x}-7< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}< 7\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x< 49\\x>4\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{49}{9}\\x>4\end{cases}}\Leftrightarrow4< x< \frac{49}{9}\)

2. \(\hept{\begin{cases}3\sqrt{x}-7>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}>7\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x>49\\x< 4\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{49}{9}\\x< 4\end{cases}}\)( loại )

Vậy với 4 < x < 49/9 thì A < -2

g) Để \(A>\sqrt{x}-1\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\left(\sqrt{x}-1\right)>0\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{x-3\sqrt{x}+2}{\sqrt{x}-2}>0\)

=> \(\frac{-x+4\sqrt{x}-5}{\sqrt{x}-2}>0\)

Ta có : \(-x+4\sqrt{x}-5=-\left(x-4\sqrt{x}+4\right)-1=-\left(\sqrt{x}-2\right)^2-1\le-1< 0\left(\forall\ge0\right)\)

Nên để A > 0 thì ta chỉ cần xét \(\sqrt{x}-2< 0\)

\(\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ => \(\hept{\begin{cases}0< x< 4\\x\ne1\end{cases}}\)thì tm