K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Tương tự: https://hoc24.vn/hoi-dap/question/279767.html

7 tháng 6 2017

Sửa đề: Sửa x+y thành x-y đi nhé ở giả thiết âý

Lời giải+làm rõ cái gợi ý

Ta có mệnh đề \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\), áo dụng cái này với \(a=\left(y-z\right)\sqrt[3]{1-x^3};b=\left(z-x\right)\sqrt[3]{1-y^3};c=\left(x-y\right)\sqrt{1-z^3}\) ta được: 

\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+....=...\) (như trên)

Suy ra \(\left(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3\right)-\left(\left(xy-xz\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(x+z\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\left(1\right)\)

Ta lại có:\(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(2\right)\)

Và \(\left(xy-zx\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3=3xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(3\right)\)

Thay (2),(3) vào (1) ta có:

\(3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-xyz\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)

Vì x,y,z đôi một khác nhau nên 

\(\left(1-xyz\right)=\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)

\(\Leftrightarrow\left(1-xyz\right)^3=\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

P.s:mệt quá rồi, vừa làm vừa ngáp có gì mai thanh toán

7 tháng 6 2017

Bạn lập phương 2 vế của phương trình =0 đó rồi nhân tung ra (vất vả) rồi kết hợp với gợi ý của thầy cậu là ok

30 tháng 11 2019

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

29 tháng 11 2019

Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,

Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6

Help meeee, please!

thanks nhiều

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

8 tháng 6 2017

Áp dụng bổ đề trên kia ta có:

\((y-z)^3(1-x^3)+(z-x)^3(1-y^3)+(x-y)^3(1-z^3)\)

\(=3(x-y)(y-z)(x-z)\sqrt[3]{(1-x^3)(1-y^3)(1-z^3)}\)

Xét VT: \((y-z)^3(1-x^3)+(z-x)^3(1-y^3)+(x-y)^3(1-z^3)\)

\(=(y-z)^3+(z-x)^3+(x-y)^3-[(xy-xz)^3+(yz-xy)^3+(xz-yz)^3]\)

\(=3(x-y)(y-z)(x-z)-3xyz(x-y)(y-z)(x-z)\)

\(=3(x-y)(y-z)(x-z)(1-xyz)\).Suy ra

\(3(x-y)(y-z)(x-z)(1-xyz)\)

\(=3(x-y)(y-z)(x-z)\sqrt[3]{(1-x^3)(1-y^3)(1-z^3)}\)

\(\Leftrightarrow (1-x^3)(1-y^3)(1-z^3)=(1-xyz)^3\)

3 tháng 8 2018

\(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)->\left(a;b;c\right)\)

13 tháng 5 2018

nhân VT ra rồi dùng cô si là ra 

13 tháng 5 2018

ở nhở :v bị ngáo nhập :v