K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

đây là bất đẳng thức

giải cho 1 bài thôi:

(x-2)(x+2)<0

=>x-2 và x+2 trái dấu

mà x-2<x+2

=>x-2<0 và x+2>0

=>x<-2 và x>-2

=>-2<x<2=>x E {-1;0;1}

còn lại tương tự

4 tháng 1 2016

lớp 6 hok bài nek rùi ak, như bài lớp 9 í

16 tháng 2 2019

Lí luận chung cho cả 4 câu :

Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau 

a) Dễ thấy \(x-2>x-7\)

\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)

b) tương tự

c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)

\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)

Tự giải nốt nha bạn mình bận rồi 

13 tháng 8 2019

Trả lời

Mk nghĩ bạn có thể tham khảo ở CHTT nha !

Có đáp án của câu b;c và d đó.

Đừng ném đá chọi gạch nha !

a) vi(x^2+5)(x^2-25)=0

=>x^2+5=0 hoac x^2-25=0

=>x=...hoac x=...(tu lam)

b)(x-2)(x+1)=0

=>x-2=0 hoac x+1=0

=>x=2 hoac x=-1

c)(x^2+7)(x^2-49)<0

=>x^2+7va x^2-49 trai dau

ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7

con lai tuong tu

tu lam nhe nho k nha

27 tháng 8 2023

làm ơn giúp 🙏🙏🙏

a: =>1/3x+2/5x-2/5=0

=>11/15x-2/5=0

=>11/15x=2/5

=>x=2/5:11/15=2/5*15/11=30/55=6/11

b: =>-5x-1-1/2x+1/3=x

=>-11/2x-2/3-x=0

=>-13/2x=2/3

=>x=-2/3:13/2=-2/3*2/13=-4/39

c: (x+1/2)(2/3-2x)=0

=>x+1/2=0 hoặc 2/3-2x=0

=>x=1/3 hoặc x=-1/2

d: 9(3x+1)^2=16

=>(3x+1)^2=16/9

=>3x+1=4/3 hoặc 3x+1=-4/3

=>3x=1/3 hoặc 3x=-7/3

=>x=1/9 hoặc x=-7/9

16 tháng 7 2017

a, \(x^2-9=0\Rightarrow x^2=9\Rightarrow x\pm3\)

b, \(\left(x-3\right)^2-25=0\Rightarrow\left(x-3\right)^2=25\)

\(\Rightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

c, \(\left(x-3\right)\left(2x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)

d, \(\left(x-3\right)x-2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

e, \(3x\left(x-1\right)-5\left(1-x\right)=0\)

\(\Rightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

g, \(x^2+6x-7=0\)

\(\Rightarrow x^2-x+7x-7=0\)

\(\Rightarrow x.\left(x-1\right)+7.\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

h,\(2x^2+5x-7=0\)

\(\Rightarrow2x^2-2x+7x-7=0\)

\(\Rightarrow2x.\left(x-1\right)+7.\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Chúc bạn học tốt!!!

16 tháng 7 2017

a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) vậy \(x=3;x=-3\)

b) \(\left(x-3\right)^2-25=0\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

vậy \(x=8;x=-2\)

c) \(\left(x-3\right)\left(2x-5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)

vậy \(x=3;x=\dfrac{5}{2}\)

d)\(\left(x-3\right).x-2\left(x-3\right)=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) vậy \(x=2;x=3\)

e) \(3x\left(x-1\right)-5\left(1-x\right)=0\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-5}{3};x=1\)

câu e t thấy sai sai nhưng vẫn làm ; bn coi lại đề nha

g) \(x^2+6x-7=0\Leftrightarrow x^2-x+7x-7=0\)

\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\) vậy \(x=-7;x=1\)

h) \(2x^2+5x-7=0\Leftrightarrow2x^2-2x+7x-7=0\)

\(\Leftrightarrow2x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(2x+7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-7}{2};x=1\)

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

1 tháng 10 2016

\(a.\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)

\(b.x\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)

\(c.\left(x-2\right)\left(5-x\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

\(d.\left(x-1\right)\left(x^2+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)

6 tháng 11 2016

a) ( x - 4 ) . ( x + 7 ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 4 = 0 => x = 0 + 4 = 4

+) nếu x + 7 = 0 => x = 0 - 7 = -7

vậy x = { 4 ; -7 }

b) x . ( x + 3 ) = 0

x + 3 = 0 : x

x + 3 = 0

x = 0 - 3

x = -3

vậy x = -3

c) ( x - 2 ) . ( 5 - x ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 2 = 0 => x = 0 + 2 = 2

+) nếu 5 - x = 0 => x = 5 - 0 = 5

vậy x = { 2 ; 5 }

d) ( x - 1 ) . ( x2 + 1 ) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

+) x - 1 = 0 => x = 0 + 1 = 1

+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1

vậy x = { 1 ; -1 }

a) Giải theo cách lớp 8

x^2 -1 +2 =0

x^2 +1 =0

x^2 = -1 (vô lý)

Suy ra vô nghiệm

Lớp 6:

(x-1)(x+1) = -2 = 1x(-2) 

Mà 1-(-2)=3

(x+1) - (x-1) =2

Suy ra vô nghiệm

b) (x+1) (3-x)=0

Suy ra x+1 = 0 hay 3-x=0

Suy ra x = -1 hay x=3

c) (2-x)^4 = 3^4 hay 2-x = (-3)^4

suy ra 2-x=3 hay 2 - x = -3

x = -1 hay x = 5

d) x^2 + 1 = 0 hay 81-x^2 = 0

x^2 = -1 ( vô lý) nên

81 - x^2 =0

x^2=81

x = 9 hay x= -9

\(\left(x-1\right)\left(x+1\right)+2=0\Rightarrow x^2-1+2=0\) ( Lớp 6 chưa dùng căn thì vô nghiệm )

\(\Rightarrow x^2-1=-2\Rightarrow x^2=\left(-2\right)+1=-1\Leftrightarrow x=\sqrt{-1}\) 

\(\left(x+1\right)\left(3-x\right)=0\). Xét 2 trường hợp : \(x+1=0\) và \(3-x=0\)

Với \(x+1=0\Rightarrow x=0-1=-1\) còn \(3-x=0\Rightarrow x=0+3=3\)

\(\left(2-x\right)^4=81=3^4\Rightarrow2-x=3\Leftrightarrow x=2-3=-1\)

TH2 : Với \(\left(2-x\right)^4=\left(-3\right)^4\Rightarrow2-x=-3\Leftrightarrow x=2-\left(-3\right)=5\)

\(\left(x^2+1\right)\left(81-x^2\right)=0\) . Xét 2 trường hợp \(x^2+1=0\) và \(81-x^2=0\)

 Với \(x^2-1=0\Rightarrow x^2=0+1=1\Rightarrow x=\sqrt{1}\) ( Với lớp 6 thì vô nghiệm )

Với \(81-x^2=0\Rightarrow81=0+x^2=x^2=9^2;\left(-9\right)^2\Rightarrow x=9;-9\)