Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)
\(=\dfrac{1}{2}\)
b) Ta có: \(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{100}+\sqrt{99}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{99}+\sqrt{100}\)
=-1+10=9
Nếu \(a+b+c=0\)
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+0.\dfrac{2}{abc}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\)
\(=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
a. Đề bài sai, chắc chắn thiếu dữ kiện \(a+b+c=0\)
b.
\(\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{99^2}+\dfrac{1}{\left(-100\right)^2}}=\sqrt{\left(1+\dfrac{1}{99}-\dfrac{1}{100}\right)^2}\)
\(=1+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{9901}{9900}\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10
\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{99}{100}\)
\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{1}{n+1}=\dfrac{1}{100}\)
=> n+1=100
n=99
1/2 + 1/6 + 1/12 + ... + 1/(n(n+1)) = 99/100`
`=> 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(n.(n+1)) = 99/100`
`=> 1/1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 + ... + 1/n - 1/(n+1) = 99/100`
`=> 1 - 1/(n+1) = 99/100`
`=> 1/(n + 1) = 1 - 99/100`
`=> 1/(n + 1 ) = 1/100`
`=> n +1 = 100`
`=> n = 99`
\(\dfrac{100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}+\dfrac{101}{101}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{101\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=101-2\)
\(=99\)