Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) x=-2 nha
d) =\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+......+\(\frac{1}{11.12}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+.....+\(\frac{1}{11}\)-\(\frac{1}{12}\)
=\(\frac{1}{5}\)-\(\frac{1}{12}\)= \(\frac{7}{60}\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)
\(A=\frac{1.2.3...99}{2.3.4...100}\)
\(A=\frac{1}{100}\)
\(B=1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{72}\)
\(B=1+1+...+1+\left(\frac{1}{12}+\frac{1}{20}+...+\frac{1}{72}\right)\)
\(B=5.1+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)
\(B=5+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(B=5+\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(B=5+\frac{2}{9}=\frac{47}{9}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)
\(=\frac{1.2.3.4....99}{2.3.4.5...100}\)
\(=\frac{1}{100}\)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
\(\frac{1}{2011}.x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2010}\right).\left(1-\frac{1}{2011}\right)\)
\(\frac{1}{2011}.x=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2009}{2010}.\frac{2010}{2011}\)
\(\frac{1}{2011}.x=\frac{1.2.3...2009.2010}{2.3.4...2010.2011}\)\(=\frac{1}{2011}\)
\(x=\frac{1}{2011}:\frac{1}{2011}=1\)
Vậy x=1
\(\frac{1}{2011}.x=\frac{1}{2}.\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)......\left(\frac{2010}{2011}\right)\)
\(\frac{1}{2011}.x=\frac{2}{4}.\left(\frac{4}{6}\right).\left(\frac{6}{8}\right).......\left(\frac{4018}{4020}\right).\left(\frac{4020}{4022}\right)\)
\(\frac{1}{2011}.x=\frac{2.4.6.8.....4018.4020}{4.6.8.10.....4020.4022}\)
\(\frac{1}{2011}.x=\frac{2}{4022}\)
\(\Rightarrow\)\(x=\frac{2}{4022}:\frac{1}{2011}=1\)
Ai thấy đún thì ủng hộ mink nha !!!
Thanks you very much !!
Chúc các bạn luôn học giỏi !!!
\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{15}\right)+....+\left(x+\frac{1}{575}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(13x+\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(13x+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(2x+\frac{12}{25}=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
Đặt \(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(3A-A=1-\frac{1}{3^5}=\frac{242}{243}=2A\)
=> \(A=\frac{121}{243}\)
=> \(2x+\frac{12}{25}=\frac{121}{243}\)
=> \(2x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)
=> x = ......
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
\(\left(1-\frac{1}{35}\right)\left(1-\frac{1}{36}\right)\left(1-\frac{1}{37}\right)...\left(1-\frac{1}{2010}\right)\left(1-\frac{1}{2011}\right)\)
\(=\frac{34}{35}.\frac{35}{36}.\frac{36}{37}.....\frac{2009}{2010}.\frac{2010}{2011}\)
\(=\frac{34}{2011}\)
\(\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}+\frac{109}{110}+\frac{131}{132}+\frac{155}{156}\)
\(=1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}+1-\frac{1}{110}+1-\frac{1}{132}+1-\frac{1}{156}\)
\(=7-\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\right)\)
\(=7-\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\right)\)
\(=7-\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{12}-\frac{1}{13}\right)\)
\(7-\left(\frac{1}{6}-\frac{1}{13}\right)=6\frac{71}{78}\)