K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{n}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{n-1}{n}\)

\(=\dfrac{1}{n}\)

9 tháng 2 2021

a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)

b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)

NV
18 tháng 1 2022

\(=\lim\dfrac{1.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\dfrac{1}{3}}}{1.\dfrac{1-\left(\dfrac{2}{5}\right)^{n+1}}{1-\dfrac{2}{5}}}=\lim\dfrac{9}{10}.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\left(\dfrac{2}{5}\right)^{n+1}}=\dfrac{9}{10}\)

\(=lim\dfrac{\left(1-\dfrac{1}{3^{n-1}}\right)\left(1-\dfrac{2}{5}\right)}{\left(1-\dfrac{1}{3}\right)\left(1-\left(\dfrac{2}{50}\right)^{n+1}\right)}\\ =lim\dfrac{9}{10}\left(\dfrac{1-\dfrac{1}{3^{n-1}}}{1-\left(\dfrac{-2}{5}\right)^{n+1}}\right)\\ =\dfrac{9}{10}\)

25 tháng 5 2017

b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.

25 tháng 5 2017

c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.

Chọn B

NV
22 tháng 4 2022

\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)

\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)

\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)

\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)

\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)

27 tháng 1 2022

\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{\left(1+y\right)\left(1+z\right).64}}=\dfrac{3x}{4}\)

\(\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\)

\(\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{8}+\dfrac{1+y}{8}\ge\dfrac{3z}{4}\)

\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{x+y+z}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{xyz}}{2}-\dfrac{3}{4}=\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\left(đpcm\right)\)

(bài này chắc thiếu đk xyz=1 ?nên mình bổ sung xyz=1)

27 tháng 1 2022

( xyz=3)

Áp dụng BDDT AM-GM:

Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{\left(1+y\right)\left(1+z\right).8.8}}=3\sqrt[3]{\dfrac{x^3}{64}}=\dfrac{3x}{4}\)

Chứng minh tương tự ta có:

\(\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\)

\(\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{8}+\dfrac{1+y}{8}\ge\dfrac{3z}{4}\)

Cộng từng vế ta được:

\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{3+x+y+z}{4}\ge\dfrac{3\left(x+y+z\right)}{4}\)

\(\Leftrightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3x+3y+3z-3-x-y-z}{4}=\dfrac{2\left(x+y+z\right)-3}{4}\)

\(\Leftrightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{2.\sqrt[3]{xyz}-3}{4}=\dfrac{2.3-3}{4}=\dfrac{3}{4}\left(đfcm\right)\)