Lấy ngẫu nhiên một thẻ từ một hộp chứa 20 thẻ được đánh số từ 1 đến 20. Xác suất để lấy được t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Đáp án D

Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15

Suy ra xác suất lấy được thẻ đó là  3 20 = 0 , 15 .

24 tháng 11 2017

A

27 tháng 11 2021

\(\left|\Omega\right|=20.20=400\)

\(\left|\Omega_A\right|=2.20=40\)

\(\Rightarrow P\left(A\right)=\dfrac{40}{400}=\dfrac{1}{10}\)

14 tháng 8 2019

Đáp án C

4 tháng 5 2018

B = {5,10,15,20,25,30}, n(B) = 6

⇒P(B) =6/30 =1/5

Chọn đáp án là B

Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.

26 tháng 12 2021

Gọi T là biến cố "Lấy được thẻ có ghi số chia hết cho 3".

\(\left|\Omega\right|=C^2_{17}\)

TH1: Lấy được 1 thẻ có ghi số chia hết cho 3.

\(\Rightarrow\) Có \(C^1_5.C^1_{12}\) cách lấy.

TH2: Lấy được 2 thẻ có ghi số chia hết cho 3.

\(\Rightarrow\) Có \(C^2_5\) cách lấy.

\(\Rightarrow\left|\Omega_T\right|=C^1_5.C^1_{12}+C^2_5\)

\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^1_5.C^1_{12}+C^2_5}{C^2_{17}}=\dfrac{35}{68}\)

26 tháng 12 2021

undefined

16 tháng 1 2019

Chọn C

15 tháng 4 2017

Chọn B

NV
15 tháng 2 2020

Câu 1: dài quá, làm biếng, bài này rất nổi tiếng, tìm là thấy liền :D

Câu 2:

Gọi 2 số đó là \(x< y\), số cách chọn ra 2 số là \(C_{2019}^2\)

Theo bài ra ta có: \(\left\{{}\begin{matrix}x^2+3y=a^2\\y^2+3x=b^2\end{matrix}\right.\)

Do \(x< y\Rightarrow x^2< x^2+3y< x^2+3x< \left(x+2\right)^2\)

\(\Rightarrow x^2+3y=\left(x+1\right)^2\Rightarrow3y=2x+1\Rightarrow x=\frac{3y-1}{2}\)

\(\Rightarrow y^2+3\left(\frac{3y-1}{2}\right)=b^2\Leftrightarrow2y^2+9y-3=2b^2\)

\(\Leftrightarrow\left(4y+9\right)^2-105=16b^2\)

\(\Leftrightarrow\left(4y-4b+9\right)\left(4y+3b+9\right)=105\)

Phương trình nghiệm nguyên này cho ta 2 nghiệm là \(y=1\Rightarrow x=1\left(l\right)\)\(y=11\Rightarrow x=16\)

Vậy có đúng 1 cặp số tự nhiên thỏa mãn yêu cầu đề bài

\(\Rightarrow\) Xác suất \(P=\frac{1}{C_{2019}^2}\)

Sao nhỏ vậy ta?

NV
15 tháng 2 2020

Câu 3:

Không gian mẫu: \(9.A_9^7\)

Ta thấy tổng 10 chữ số phân biệt từ 0 đến 9 bằng 45

Do đó, tổng 8 chữ số phân biệt tối đa bằng \(45-1-0=44\), tối thiểu bằng \(45-9-8=28\)

Mà để tổng 8 số chia hết cho 45 \(\Rightarrow\) chia hết cho 9

\(\Rightarrow\) Tổng 8 chữ số phải bằng 36

Để ý 1 điều nữa là \(45-36=9\), do đó, để 8 chữ số có tổng 36 thì ta chỉ cần loại đi 1 cặp số có tổng là 9 từ 10 chữ số 0-9

- Nếu cặp bị loại là (0;9): số cuối có 1 cách chọn (5), 7 vị trí còn lại có \(7!\) cách hoán vị

- Cặp bị loại là (4;5): số cuối có 1 cách chọn (0), 7 vị trí còn lại có \(7!\) cách hoán vị

- Cặp bị loại ko chứa 0 hoặc 5 (gồm 18; 27; 36): nếu số cuối là 0 thì 7 vị trí còn lại có 7! cách hoán vị, nếu số cuối là 5 thì vị trí đầu có 6 cách chọn, 6 vị trí còn lại có 6! cách hoán vị \(\Rightarrow3.\left(7!+6.6!\right)\)

Vậy tổng cộng có: \(7!+7!+3\left(7!+6.6!\right)\) số

Xác suất: \(P=\frac{5.7!+18.6!}{9.A_9^7}=\frac{53}{2268}\)

Cách làm kiểu vậy, bạn coi lại mấy bước tính