Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4,\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
nên \(2+\sqrt{3}\)và \(2-\sqrt{3}\)là hai nghiệm của phương trình \(X^2-4X+1=0\).
\(x_1+x_2=3+2\sqrt{3}+3-2\sqrt{3}=6\)
\(x_1.x_2=3^2-\left(2\sqrt{3}\right)^2=-3\)
=> Phương trình bậc 2 có dạng: x^2 - 6x - 3 = 0
b. Tự đặt đk
\(x^{^2}+5\sqrt{x-3}=21\\\Leftrightarrow x^{^2}-9+5\sqrt{x-3}=12 \)
Đặt \(a=\sqrt{x-3}\) \(\left(a\ge0\right)\) Phương trình trở thành:
\(a^{^2}\left(a^{^2}+6\right)+5a=12\\ \Leftrightarrow a^{^4}+6a^{^2}+5a-12=0\\ \Leftrightarrow a^{^4}-a^{^3}+a^{^3}-a^{^2}+7a^{^2}-7a+12a-12=0\\ \Leftrightarrow\left(a-1\right)\left(a^{^3}+a^{^2}+7a+12\right)=0\\ \Leftrightarrow a=1\left(tmdk\right)\)
Ta có: vì \(a\ge0\) nên \(a^{^3}+a^{^2}+7a+12\ne0\)
Với a = 1 ta có x=4 (tmdk)
a) Ta có: a+b=14, ab=1 \(\Rightarrow\)pt: X^2 -14X+1 b) S= a^3+ b^3=2720 là số nguyên (ĐPCM)
a) x2 -\(\dfrac{17}{4}x+1=0\)
b) x2-(\(\sqrt{3}+\sqrt{5}\))x+\(\sqrt{15}=0\)
c)x2-6x+7=0