\(x,y\) là hai số dương thở mãn điều kiện  \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

\(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}< =5\)

\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{\left(2x+2\right)y}< =5\)

\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)

Áp dụng bất đẳng thức cauchy ta được :

\(\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =\frac{x+y+4}{2}+\frac{2y+x+1}{2}\)

\(=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

\(=>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)

Vậy ta có điều cần phải chứng minh

7 tháng 8 2020

Sử dụng bất đẳng thức AM - GM cho 2 số ta có được:

\(\sqrt{xy+2x+2y+4}=\sqrt{\left(x+2\right)\left(y+2\right)}\le\frac{x+2+y+2}{2}\)

\(\sqrt{\left(2x+2\right)y}=\sqrt{\left(x+1\right)\cdot2y}\le\frac{x+1+2y}{2}\)

Khi đó:

\(LHS\le\frac{x+2+y+2}{2}+\frac{x+1+2y}{2}=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

Đẳng thức xảy ra tại x=y=1

Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với

2 tháng 7 2017

Vì  \(x+y+z=2\)

Ta có  \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)

Tương tự  \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\)  và  \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)

Do đó  \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)

Vậy  \(P\le4\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\)  và x+y+z=2   \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

3 tháng 12 2019

Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)