Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn vecto các điện áp.
Hiệu suất của động cơ H=A/P
→ P = A H = 8 , 5 0 , 85 = 10 kW.
→ Điện trở trong của động cơ R d c = P I 2 = 10000 50 2 = 4 Ω
→ Z d c = R cos 30 0 = 8 3 Ω.
→ U d c = I Z d c = 50 8 3 = 400 3 V.
Từ giản đồ vecto, ta thấy rằng góc hợp với U d c → và U d → là 150 độ .
→ U = 125 2 + 400 3 2 − 2.125. 400 3 cos 150 0 = 345 V
Đáp án B
Bài này chỉ cần sử dụng công thức 2 giá trị của C để có cùng 1 giá trị của $U_C$ :
$U_C=U_{C_{max}} \cos \left(\dfrac{\varphi _1-\varphi _2}{2} \right)$
$\Rightarrow U_{C_{max}}=\dfrac{60}{\cos \dfrac{\pi }{6}}=40\sqrt{3} V$
Khi $U_{C_{max}}$ ta có:
$P=\dfrac{U^2}{R}\cos ^2\varphi _3=P_{max}\cos ^2\varphi _3=\dfrac{P_{max}}{2}$
$\Rightarrow \cos \varphi _3=\dfrac{\sqrt{2}}{2}$
Vẽ giản đồ suy ra: $U=\dfrac{U_{C_{max}}}{\sqrt{2}}=20\sqrt{6}\left(V \right)$
Đáp án C
Phương pháp: Mạch điện xoay chiều RLC mắc nối tiếp có L thay đổi
Cách giải:
+ Do uL và uC ngược pha nhau => tại mọi thời điểm ta có:
+ Khi L = L0 thì điện áp hiệu dụng hai đầu cuộn dây đạt cực đại nên:
Đáp án A
+ Khi tốc độ quay của roto là n (vòng/phút):
+ Khi tốc độ quay của roto là 2n (vòng/phút)
\(Z_L=\omega L=100\sqrt{3}\Omega\)
C thay đổi để Uc max khi: \(Z_C=\frac{R^2+Z_L^2}{Z_L}=\frac{100^2+3.100^2}{100\sqrt{3}}=\frac{4}{\sqrt{3}}.100\Omega\)
\(U_{cmax}=U\frac{\sqrt{R^2+Z_L^2}}{R}=100\frac{\sqrt{100^2+3.100^2}}{100}=200V\)
Chọn đáp án C
+ Công suất tiêu thụ không đổi nên:
+ Hệ số công suất của cuộn dây: