Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x và y tỉ lệ thuận
nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{2x_1-3x_2}{2y_1-3y_2}=\dfrac{42.5}{-8.5}=-5\)
=>x=-5y
a) (1,75 : \(\dfrac{7}{2}\)).\(\dfrac{8}{5}\)=(\(\dfrac{7}{4}\) : \(\dfrac{7}{2}\)).\(\dfrac{8}{5}\)=(\(\dfrac{7}{4}\).\(\dfrac{2}{7}\)).\(\dfrac{8}{5}\)=\(\dfrac{1}{2}\).\(\dfrac{8}{5}\)=\(\dfrac{4}{5}\)
b) \(\dfrac{7}{2}\).\(4\dfrac{5}{3}\)-\(2\dfrac{5}{3}\).\(\dfrac{7}{2}\)=(\(4\dfrac{5}{3}\)-\(2\dfrac{5}{3}\)).\(\dfrac{7}{2}\)=2.\(\dfrac{7}{2}\)=7
c)\(\dfrac{-5}{9}\).(\(\dfrac{3}{10}-\dfrac{1}{5}\))=\(\dfrac{-5}{9}\).(\(\dfrac{3}{10}-\dfrac{2}{10}\))=\(\dfrac{-5}{9}\).\(\dfrac{1}{10}\)=\(\dfrac{-1}{18}\)
Bài 2:
\(a,\Rightarrow\left|\dfrac{3}{4}+x\right|=1\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}+x=1\\\dfrac{3}{4}+x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\\ b,\Leftrightarrow x+\dfrac{2}{5}=\dfrac{4}{9}:\dfrac{4}{9}=1\Leftrightarrow x=\dfrac{3}{5}\)
b: \(\dfrac{4}{9}:\left(x+\dfrac{2}{5}\right)=\dfrac{4}{9}\)
\(\Leftrightarrow x+\dfrac{2}{5}=1\)
hay \(x=\dfrac{3}{5}\)
Bài 77:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{y-x}{9-8}=5\)
Do đó: x=40; y=45
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
12:
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: Xét ΔNAC và ΔNBE có
góc NAC=góc NBE
NA=NB
góc ANC=góc BNE
=>ΔNAC=ΔNBE
=>AC=BE
c: Xét tứ giác AEBC có
AC//BE
AC=BE
=>AEBC là hình bình hành
=>AE//BC
d: Xét ΔEAC có EF/EA=EN/EC
nên FN//AC//EB
Xét ΔECB có CM/CB=CN/CE
nên NM//EB
=>F,N,M thẳng hàng