Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,x^4-8x^2-9=0\\ \Leftrightarrow x^4+x^2-9x^2-9=0\\ \Leftrightarrow\left(x^2+1\right)\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\left(x^2+1\ge1>0\right)\\x=3\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ b,\left\{{}\begin{matrix}2\left(x-1\right)-3\left(x-3y\right)=5\\3\left(x-1\right)+5\left(x-3y\right)=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6\left(x-1\right)-9\left(x-3y\right)=15\\6\left(x-1\right)+10\left(x-3y\right)=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19\left(x-3y\right)=-19\\3\left(x-1\right)+5\left(x-3y\right)=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\3\left(x-1\right)-5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-1=-\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\-\dfrac{4}{3}-3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=-\dfrac{1}{9}\end{matrix}\right.\)
5b.
Theo Bunhiacopxki:
\(\left(\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\right)^2\le\left(x+y\right)\left(\left(2x+y\right)+\left(2y+x\right)\right)=3\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\sqrt{3}\left(x+y\right)\)
\(\Rightarrow\dfrac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\dfrac{x+y}{\sqrt{3}\left(x+y\right)}=\dfrac{1}{\sqrt{3}}\)
Dấu "=" xảy ra khi x=y
Câu 12.
\(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)
\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)
\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)
\(=8\sqrt{a}\)
a: Để phương trình có hai nghiệm phân biệt thì
\(1^2-4\cdot1\left(m-2\right)>0\)
=>4(m-2)<1
=>m-2<1/4
hay m<9/4
b: \(\Leftrightarrow3^2-4\cdot\left(-2\right)\left(m-3\right)>0\)
=>9+8(m-3)>0
=>9+8m-24>0
=>8m-15>0
hay m>15/8
Câu 3:
a: \(\Leftrightarrow\left(-m\right)^2-4\cdot2\cdot2=0\)
\(\Leftrightarrow m^2=16\)
hay \(m\in\left\{4;-4\right\}\)
b: \(\Leftrightarrow4-4\cdot3\cdot\left(m-1\right)=0\)
=>4-12(m-1)=0
=>4-12m+12=0
=>-12m=-16
hay m=4/3