Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(0.\left(15\right)+0.\left(84\right)=\dfrac{15}{99}+\dfrac{84}{99}=1\)
b: \(3\cdot0,\left(333\right)=1\)
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{z}{6}=\dfrac{b-z}{8-6}=35\)
Do đó: a=315; b=280; c=245; d=210
1: \(A=-\dfrac{1}{3}\cdot3\cdot x\cdot x^3\cdot y\cdot z^2=-x^4yz^2\)
2: \(A=-1^4\cdot\left(-1\right)\cdot2^2=4\)
\(C=1,7+\left|3,4-x\right|\)
\(=1,7+\left|3,4-x\right|\ge1,7\)
\(MinC=1,7\Leftrightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
\(C=1,7+\left|3,4-x\right|\)
do \(\left|3,4-x\right|\ge0\)
\(\Rightarrow\)\(Min\)\(C=1,7+0=1,7\)
Vậy \(Min\)\(C=1,7\)\(khi\)\(x=3,4\)
Bài 1:
Giải:
Vì đại lượng x tỉ lệ nghịch với đại lượng y nên ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) và \(x+y=14\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{3}=2\Rightarrow y=6\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(8;6\right)\)
Bài 2:
Giải:
Vì x và y là 2 đại lượng tỉ lệ nghịch nên ta có:
\(6x=8y\Rightarrow\frac{x}{8}=\frac{y}{6}\) và \(2x-3y=10\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{6}=\frac{2x}{16}=\frac{3y}{18}=\frac{2x-3y}{16-18}=\frac{10}{-2}=-5\)
+) \(\frac{x}{8}=-5\Rightarrow x=-40\)
+) \(\frac{y}{6}=-5\Rightarrow y=-30\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-40;-30\right)\)
1/ Ta có: x;y tỉ lệ nghịch với 3,4
=> \(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\) và x+y = 14
Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:
\(\frac{\frac{x}{1}}{3}\)=\(\frac{\frac{y}{1}}{4}\)=\(\frac{x+y}{\frac{1}{3}+\frac{1}{4}}\)=\(\frac{\frac{14}{7}}{12}\)=24
\(\frac{\frac{x}{1}}{3}\)=24 => x = 8
\(\frac{\frac{y}{1}}{4}\)=24 => y = 6
Vậy x = 8 ; y =6
2/ Ta có: x;y tỉ lệ nghịch với 6;8
=> \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\) và 2x-3y = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{\frac{x}{1}}{6}\)=\(\frac{\frac{y}{1}}{8}\)=\(\frac{2x-3y}{2.\frac{1}{6}-3.\frac{1}{8}}\)=\(\frac{\frac{10}{-1}}{24}\)=\(\frac{-5}{12}\)
\(\frac{\frac{x}{1}}{6}\)=\(\frac{-5}{12}\)=> x = \(\frac{-5}{72}\)
\(\frac{\frac{y}{1}}{8}\)=\(\frac{-5}{12}\)=> y = \(\frac{-5}{96}\)
Vậy x= \(\frac{-5}{72}\)
y = \(\frac{-5}{96}\)
Câu 4:
Số đo các góc còn lại là \(47^0;133^0;133^0\)
Bài 2:
a: Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
HA=HD
Do đó: ΔBHA=ΔBHD
b: Ta có: ΔBHA=ΔBHD
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BH là tia phân giác của góc ABD
Bài đâu bn?