\(\sqrt{35}+\sqrt{99}\)Và 16

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

\(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)

Vậy \(\sqrt{35}+\sqrt{99}< 16\)

28 tháng 2 2020

theo ket qua cho thay:9.4594<10

28 tháng 2 2020

Ta có :

\(\sqrt{3}< \sqrt{4}=2\)

\(\sqrt{8}< \sqrt{9}=3\)

\(\sqrt{24}< \sqrt{25}=5\)

\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)

Vậy ...

19 tháng 7 2019

\(\sqrt{27}-\sqrt{12}-\sqrt{2016}>\sqrt{25}-\sqrt{16}-\sqrt{2025}\)

\(=5-4-45=-44\)

Vậy \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)

19 tháng 7 2019

Có : \(\sqrt{12}< \sqrt{16}=4\)

         \(\sqrt{2016}< \sqrt{2025}\)         => \(\sqrt{12}+\sqrt{2016}< 4+45\)

                                                                 => \(-\sqrt{12}-\sqrt{2016}>-49\)(1)

Lại có : \(\sqrt{27}>\sqrt{25}=5\)(2)

Từ (1),(2) có : \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>5-49\)or \(\sqrt{27}-\sqrt{12}-\sqrt{2016}>-44\)

14 tháng 10 2018

Ta có : \(\sqrt{61-35}=\sqrt{26}>\sqrt{25}=5\)(1)

           \(\sqrt{61}-\sqrt{35}< \sqrt{64}-\sqrt{36}=8-6=2\)(2)

Từ (1) và (2) ta được :  \(\sqrt{61-35}>5>2>\sqrt{61}-\sqrt{35}\)

\(\Rightarrow\sqrt{61-35}>\sqrt{61}-\sqrt{35}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)

mà \(\sqrt{2016}+\sqrt{2015}>\sqrt{2014}+\sqrt{2015}\)

nên \(\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)

8 tháng 12 2016

19 bé hơn

23 tháng 12 2016

19 lớn hơn hoặc bằng

24 tháng 7 2016

\(\sqrt{50+2}=\sqrt{50}+\sqrt{2}\)

Tích nha

24 tháng 7 2016

\(\sqrt{50+2}\)

\(=\sqrt{52}< 8\)

\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=8\)

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

16 tháng 8 2016

Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc

\(\sqrt{\left(40+2\right)^2}=42\)

\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)

Ta thấy:\(42+2\sqrt{80}>42\)

\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)