Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì
\(\frac{13}{27}\)= 0,481
\(\frac{16}{33}\)= 0,484
Nên :
\(\frac{13}{27}\)< \(\frac{16}{33}\)
a,Ta có phân số chung gian 123/343. mà:123/341>123/343(so sánh mẫu số khi tử bằng nhau)vaf123/343>103/343.
Qua 2 so sánh trên có thể chứng minh:123/341>103/343.
B,Ta có :1-105/107=2/107 và 1-107/109=2/109.
Mà:2/107>2/109.Vậy 105/107<107/109.(So sánh phần bù)
so sánh phần bù:
ta thấy :1-12/13=1/13; 1-13/14=1/14
Vì 1/13>1/14 nên 12/13 < 13/14
ta có : 1-\(\frac{12}{13}\)= \(\frac{1}{13}\)
1-\(\frac{13}{14}\)= \(\frac{1}{14}\)
vì \(\frac{1}{13}\)> \(\frac{1}{14}\)nên \(\frac{12}{13}\)< \(\frac{13}{14}\)
chúc bạn học tốt !!!
Ta có: \(\frac{2012}{2011}=1-\frac{1}{2011}\)
\(\frac{2011}{2010}=1-\frac{1}{2010}\)
Vì \(\frac{1}{2011}>\frac{1}{2010}\)nên \(\frac{2012}{2011}>\frac{2011}{2010}\)
\(\Rightarrow\frac{2012}{2011}>\frac{2011}{2010}\)
203/141 có tử lớn hơn mẫu nên phân số 203/141 > 1
105/152 có tử bé hơn mẫu nên phân số 105/152 < 1
=> 105/ 152 < 1< 203/141
=> 105/152 < 203/141
Vậy...
Hai phân số 2/7 và 2/9 có cùng tử số là : 2
Ta só ánh mẫu số là 7 < 9
Vì 7 < 9 ên p/s 2/7 > 2/9 ( vì p/s nào có mẫu số nhỏ hơn thì p/s đó lớn hơn )
Vậy 2/7 > 2/9
Ta có : \(\frac{2016}{2015}-1=\frac{2016}{2015}-\frac{2015}{2015}=\frac{1}{2015}\)
\(\frac{2024}{2023}-1=\frac{2024}{2023}-\frac{2023}{2023}=\frac{1}{2023}\)
Vì \(\frac{1}{2015}>\frac{1}{2016}\) nên \(\frac{2016}{2015}>\frac{2024}{2023}\)
Ta có :
\(1-\frac{13}{27}=\frac{14}{27}\)
\(1-\frac{27}{41}=\frac{14}{41}\)
Mà \(\frac{14}{27}>\frac{14}{41}\)
\(\Rightarrow1-\frac{13}{27}>1-\frac{27}{41}\)
\(\Rightarrow\frac{13}{27}< \frac{27}{41}\)
Chúc bạn học tốt !!!
Ta có :
\(\frac{1313}{9191}\)= \(\frac{1}{7}\)= \(\frac{11}{77}\)
\(\frac{1111}{7373}\)= \(\frac{11}{73}\)
Vì \(\frac{11}{77}\)< \(\frac{11}{73}\)( 77>73)
=> \(\frac{1313}{9191}\)> \(\frac{1111}{7373}\)
\(\frac{1313}{9191}=\frac{1}{7}=\frac{1.11}{7.11}=\frac{11}{77}\)
\(\frac{1111}{7373}=\frac{11}{73}\)
\(\Rightarrow\frac{11}{77}< \frac{11}{73}\Rightarrow\frac{1313}{9191}>\frac{1111}{7373}\)