Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2}\left(\sqrt{3}+1\right)\)
\(=\sqrt{6}+\sqrt{2}\)
Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)^2=8+4\sqrt{3}\)
Và: \(\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)
Ta thấy: \(8+4\sqrt{3}>7+4\sqrt{3}\)
Hay: \(\sqrt{2}\left(\sqrt{3}+1\right)>\sqrt{3}+2\) (đpcm)
Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)
=> \(2n+2\sqrt{n^2-a^2}< 4n\)
=>\(2\sqrt{n^2-a^2}< 2n\)
=>\(\sqrt{n^2-a^2}< n\)
=>n2 - a2 < n2 (bình phương cả 2 vế)
Vì |a|>0
=>a2 > 0
=> n2-a2 < n2
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
câu b làm tương tự nhé:
Ta có
\(\frac{7}{5}=\frac{\sqrt{49}}{5}\)
\(\sqrt{2}=\frac{5\sqrt{2}}{5}=\frac{\sqrt{50}}{5}\)
Vì \(\frac{\sqrt{50}}{5}>\frac{\sqrt{49}}{5}\Rightarrow\sqrt{2}>\frac{7}{5}\)
còn \(\sqrt{2}< \frac{19}{20}\) là vô lí đấy . Vì
\(\sqrt{2}>1;\frac{19}{20}< 1\)
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)
cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??
Đặt A = \(\sqrt{2003}+\sqrt{2005}\)
B = \(2\sqrt{2004}\)
\(\Rightarrow A^2=2003+2005+2\sqrt{\left(2003.2005\right)}=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)
\(=4008+2\sqrt{\left(2004^2-1\right)}\)
\(\Rightarrow B^2=4.2004=2.2004+2.2004=4008+2\sqrt{2004^2}\)
mà \(\sqrt{2004^2>\sqrt{ }2004^2-1}\)
\(\Rightarrow B^2>A^2\Rightarrow B>A\Rightarrow2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)
Nhớ k cho mình nhé! Thank you!!!
cần lắm một người nào đó giúp mình,hạn chót là ngày mai rồi
a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)
A B C 15 0 D
Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)
Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)
Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)
CM bđt theo phương pháp tương đương:
Ta có: \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)
<=> \(\sqrt{14}+\sqrt{11}< \sqrt{12}+\sqrt{13}\)
<=> \(14+11+2\sqrt{14.11}< 12+13+2\sqrt{12.13}\)
<=> \(\sqrt{14.11}< \sqrt{12.13}\)
<=> \(14.11< 12.13\)
Ta có: 14.11 = 12.11 + 2.11 = 12.13 - 2.12 + 2.11 = 12.13 - 2(12 - 11) = 12.13 - 2 < 12.13
=> 14.11 < 12.13 (luôn đúng)
=> \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)(luôn đúng)