Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(70\right)+sin^2\left(80\right)\\ A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(40\right)+cos^2\left(40\right)+...+cos^2\left(20\right)+cos^2\left(10\right)\\ A=\left(sin^2\left(10\right)+cos^2\left(10\right)\right)+\left(sin^2\left(20\right)+cos^2\left(20\right)\right)+....+\left(sin^2\left(40\right)+cos\left(40\right)\right)\\ A=1+1+1+1+1=4\)câu b tương tự
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
= cos260o - cos250o - sin250o + sin260o
= (cos260o + sin260o) - (cos250o + sin250o)
= 1 - 1 = 0
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
= sin265o - sin255o + cos245o - cos255o + cos265o
= (sin265o + cos265o) - (sin255o + cos255o) + cos245o
= 1 - 1 +1/2
= 1/2
Đề bài mình sửa lại : A = a2021 - b2021 + c2021 - (a - b + c)2021
Ta có \(\sqrt{a}-\sqrt{b}+\sqrt{c}=\sqrt{a-b+c}\)
\(\Leftrightarrow a+b+c-2\sqrt{ab}-2\sqrt{bc}+2\sqrt{ca}=a-b+c\)
\(\Leftrightarrow b-\sqrt{ab}-\sqrt{bc}+\sqrt{ca}=0\)
\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)-\sqrt{c}\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right).\left(\sqrt{b}-\sqrt{a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=c\\b=a\end{matrix}\right.\)
Với b = c
A = a2021 - b2021 + c2021 - (a - b + c)2021
= a2021 - a2021
= 0
Tương tự với b = a ta được A = 0
Vậy A = 0
1:
a: Xét ΔABC vuông tại A có \(tanACB=\dfrac{AB}{AC}=\dfrac{1}{\sqrt{3}}\)
=>\(\widehat{ACB}=30^0\)
b: Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{8}=sin30=\dfrac{1}{2}\)
=>\(AB=4\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=8^2-4^2=48\)
=>\(AC=4\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot8=4\cdot4\sqrt{3}=16\sqrt{3}\\BH=\dfrac{AB^2}{BC}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\\BH=\dfrac{4^2}{8}=2\left(cm\right)\end{matrix}\right.\)
c: \(cosC-tanB+cotB\)
\(=cos30-tan60+cot60\)
\(=\dfrac{\sqrt{3}}{2}-\sqrt{3}+\dfrac{\sqrt{3}}{3}=\dfrac{5}{6}\sqrt{3}-\sqrt{3}=-\dfrac{1}{6}\sqrt{3}\)
a: \(A=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+...+\left(\sin^240^0+\sin^250^0\right)\)
=1+1+1+1
=4
b: \(B=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+...+\cos^245^0\)
\(=1+1+1+1+\dfrac{1}{2}=\dfrac{9}{2}\)