Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Nối MN cắt SD tại Q, MB cắt AD tại P
Suy ra mp(BMN) cắt khối chóp S.ABCD theo thiết diện tứ giác BPQN và chia khối chóp thành 2 đa diện
Đáp án C
Ta có: 2 O D 2 = a 2 ⇒ O D = a 2
⇒ S O = O D tan 60 ∘ = a 2 . 3 = a 3 2
Gọi H là hình chiếu của N lên (ABCD) là trung điểm của OC.
Ta có: N H = S O 2 = a 6 4 ; S M B C = S A B C D = a 2
V N . B C M = 1 3 N H . S M B C = 1 3 . a 6 4 . a 2 = a 3 6 12
Ta có:
M D D C . C S C N . N P P M = 1 ⇔ 1.2. N P P M = 1 ⇔ N P P M = 1 2 ⇒ P M M N = 2 3
Ta có: V M . D P Q V M . B C N = P M M N . M D M C . M Q M B = 2 3 . 1 2 . 1 2 = 1 6
⇒ V N p Q D C A = 5 6 V N . B C M = 5 6 . a 3 6 12 = 5 a 3 6 72
Chọn C
Gọi H là trọng tâm của tam giác ABC, M là trung điểm của BC, khi đó S H ⊥ B C . Ta có
Đáp án là B
Gọi H là tâm của tam giác đều A B C ⇒ S H ⊥ A B C .
Gọi M là trung điểm của B C .
Ta có A M = 3 a 3 2 ; A H = 2 3 A M = a 3 .
Xét tam giác S A H : S H = S A 2 − A H 2 = a 6 . Vậy h = d S ; A B C = S H = a 6 .
Đáp án A
Khối chóp đã cho có 3 mặt phẳng đối xứng