Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số y=
Tập xác định: (0; +∞).
Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.
Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.
Bảng biến thiên
Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).
b) y= .
Tập xác định: ℝ \{0}.
Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).
Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.
Bảng biến thiên
Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.
1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).
Bảng biến thiên :
Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).
b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.
Bảng biến thiên :
Hàm số đồng biến trên các khoảng (-∞ ; -7), (1 ; +∞) ; nghịch biến trên các khoảng (-7 ; 1).
c) Tập xác định : D = R.
y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.
Bảng biến thiên: tự vẽ.
Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +∞) ; nghịch biến trên các khoảng (-∞ ; -1), (0 ; 1).
d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = \(\dfrac{2}{3}\).
Bảng biến thiên :
Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (-∞ ; 0), ( \(\dfrac{2}{3}\); +∞).
1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).
Bảng biến thiên :
Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).
b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.
Bảng biến thiên :
Hàm số đồng biến trên các khoảng (-∞ ; -7), (1 ; +∞) ; nghịch biến trên các khoảng (-7 ; 1).
c) Tập xác định : D = R.
y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.
Bảng biến thiên: tự vẽ.
Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +∞) ; nghịch biến trên các khoảng (-∞ ; -1), (0 ; 1).
d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = 2323.
Bảng biến thiên :
Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (-∞ ; 0), ( \(\dfrac{2}{3}\); +∞).
Lời giải
khảo sát
TXD mọi x
y' =3x^2 -6x =3x(x-2)
y' =0 => x= 0 hoặc x=2
y'' =6x-6
y''(0) =-6 <0 hàm đạt cực đại tại x=0
y''(2) =6 >0 hàm đạt cực tiểu tại x =2
y'' =0 => x=1 hàm có điểm uốn tại x=1
hàm đi từ - vc--> +vc đi góc (III) lên (IV)
Vẽ đồ thị
Các điểm quan trọng
cực đại A(0,0)
cực tiểu B(2,-4)
uốn C(1,-2)
Các điểm phụ trọng
giao với trục hoành E(0,0); \(F\left(3;0\right)\)
Giao với trục tung: \(A\left(0,0\right)\)
Đồ thị
b)
nhìn vào đồ thị số y=x^3 -3x^2
Hàm số x^3 -3x^2 -m có 3 nghiệm phân biệt
khi 0<m<-4
a) y = x3 + 3x2 + 1
Tập xác định: D = R
y’= 3x2 + 6x = 3x(x+ 2)
y’=0 ⇔ x = 0, x = -2
Bảng biến thiên:
Đồ thị hàm số:
b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )
Từ đồ thị ta thấy:
- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.
- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)
- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.
- Với \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).
Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).
a) y = x3 + 3x2 + 1
Tập xác định: D = R
y’= 3x2 + 6x = 3x(x+ 2)
y’=0 ⇔ x = 0, x = -2
Bảng biến thiên:
Đồ thị hàm số:
b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )
Từ đồ thị ta thấy:
- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm
- Với 1<m/2<5⇔ 2<m
- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.
- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).
Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1
nên từ đồ thị (C) ta suy ra ngay đồ thị của hàm số :
\(y=\left|\dfrac{x^3}{6}+\dfrac{3x^2}{2}+\dfrac{5x}{2}\right|\) là hình 18
a) Tập xác định : D = R
limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3
Bảng biến thiên:
Đồ thị hàm số:
b) y=f(x) = f(x) = -x3+3x2+9x+2.
f’(x) = -3x2+6x+9. Do đó:
f’(x-1)=-3(x-1)2+6(x-1)+9
= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4
c) f’’(x) = -6x+6
f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2
Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:
y=f’(2)(x-2) + f(2) hay y = 9x+6