K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-2x_1^2+4x_1+1+2x_2^2-4x_2-1}{x_1-x_2}\)

\(=\dfrac{-2\left(x_1-x_2\right)\left(x_1+x_2\right)+4\left(x_1-x_2\right)}{x_1-x_2}\)

\(=-2\left(x_1+x_2\right)+4\)

Vì \(x_1;x_2\in\left(1;+\infty\right)\) nên \(\left\{{}\begin{matrix}x_1>1\\x_2>1\end{matrix}\right.\Leftrightarrow x_1+x_2>2\)

\(\Leftrightarrow-2\left(x_1+x_2\right)+4< 0\)

Vậy: Hàm số nghịch biến trên \(\left(1;+\infty\right)\)

23 tháng 10 2021

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-x_2^2-2x_2+2}{x_1-x_2}\)

\(=\left(x_1+x_2\right)-2\)

Vì \(x_1;x_2\in\left(-\infty;1\right)\) thì \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left(x_1+x_2\right)< 2\)

\(\Leftrightarrow\left(x_1+x_2\right)-2< 0\)

Vậy: Hàm số nghịch biến trên \(\left(-\infty;1\right)\)

24 tháng 10 2021

TXĐ: D=[0;+\(\infty\))

Hàm số này luôn đồng biến với mọi x thuộc D

25 tháng 1 2019

Hàm số bậc hai đã cho có a = 2; b = 4; c = -6;

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì a > 0, ta có bảng biến thiên

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Hàm số nghịch biến trên khoảng (-∞; -1) đồng biến trên khoảng (-1; +∞)

    Để vẽ đồ thị ta có trục đối xứng là đường thẳng x = -1; đỉnh I(-1;-8); giao với tục tung tại điểm (0;-6); giao với trục hoành tại các điểm (-3;0) và (1;0).

    Đồ thị của hàm số y   =   2 x 2   +   4 x   -   6 được vẽ trên hình 35.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

11 tháng 7 2019

y = 2x2 + x + 1

+ Tập xác định: R

+ Đỉnh A(–1/4 ; 7/8).

+ Trục đối xứng x = –1/4.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

 

12 tháng 12 2021

Bài 1:

\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4