Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà bạn
Chu vi của hình chữ nhật ABCD là :
\(\left[3+4\right].2=14\left[cm\right]\)
Diện tích hình chữ nhật ABCD là :
\(3.4=12\left[cm^2\right]\)
Đáp số : \(C=14cm\)
\(S=12cm^2\)
a) M chia hết cho 7 là rõ ràng vì các số hạng của M đều là lũy thừa của 7
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{59}+7^{60}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{59}.8\)
\(=\left(7+7^3+...+7^{59}\right).8\)
=> M cũng chia hết cho 9
Làm tương tự, để chứng minh M chia hết cho 50 thì ta nhóm số thứ nhất với số thứ ba,, số thứ hai với số thứ tư, số thứ ba với số thứ năm, v.v.
\(M=\left(7+7^3\right)+\left(7^2+7^4\right)+...+\left(7^{57}+7^{59}\right)+\left(7^{58}+7^{60}\right)\)
\(=7\left(1+7^2\right)+7^2\left(1+7^2\right)+...+7^{57}\left(1+7^2\right)+7^{58}\left(1+7^2\right)\)
\(=7.50+7^2.50+...+7^{57}.50+7^{58}.50\)
\(=\left(7+7^2+...+7^{57}+7^{58}\right).50\)
=> M cũng chia hết cho 50
b) Rút gọn M.
\(M=7+7^2+...+7^{59}+7^{60}\) (1)
=> Chia cả hai vế cho 7 ta có:
\(\frac{M}{7}=1+7+7^2+...+7^{59}\) (2)
Lấy (1) trừ cho (2) vế với vế và bỏ đi các thành phần triệt tiêu ta có:
\(M-\frac{M}{7}=7^{60}-1\)
\(\Rightarrow\frac{6}{7}M=7^{60}-1\)
\(\Rightarrow M=\frac{\left(7^{60}-1\right).7}{6}\)
Câu 1: Số ghế xếp 2 hàng là:
300-270=30 ghế.
Số ghế xếp 1 hàng là:
30:2=15 ghế
Số hàng ghế trước đó là:
270:15=18 hàng
Chọn A