K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Cái này tui chưa học đâu nha bạn iu

31 tháng 8 2016

1=(2n+1)C0, (2n+1)Cn=(2n+1)C(n+1)...

 

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)

31 tháng 3 2017

Bài 1. a) sin (x + 2) =

b) sin 3x = 1 ⇔ 3x = + k2π ⇔ x = , (k ∈ Z).

c) sin () = 0 ⇔ = kπ ⇔ x = , (k ∈ Z).

d) Vì = sin(-600) nên phương trình đã cho tương đương với

sin (2x +200) = sin(-600)



1 tháng 4 2021

 Mình nhầm \(C^1_{2016}a_{2015}\)thành  \(C^1_{2016}a^{2015}\)

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

NV
29 tháng 9 2020

a. Cho \(x=1\) ta được:

\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)

\(\Rightarrow S_1=4^{10}\)

b. Cho \(x=2\) ta được:

\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)

\(\Rightarrow S_2=11^{10}\)

c.

\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)

Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)

\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)

\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)

29 tháng 3 2016

a) gt \(\Leftrightarrow\) s-\(10\times\left(\frac{2}{11\times13}+\frac{2}{13\times15}+...+\frac{2}{53\times55}\right)=\frac{3}{11}\)

\(\Leftrightarrow s-10\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow S-10\times\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow S=1\)

29 tháng 3 2016

câu b hình như sai đề

Phải là \(\frac{1}{36}\) chứ ko phải \(\frac{1}{39}\)

6 tháng 11 2019

chỉ mk cách làm với @Nguyễn Việt Lâm

NV
6 tháng 11 2019

Xét khai triển:

\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+C_{2n+1}^2x^2+...+C_{2n+1}^{2n+1}x^{2n+1}\)

Cho \(x=1\) ta được:

\(2^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n+1}\)

\(=1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n+C_{2n+1}^{n+1}+...+C_{2n+1}^{2n}+1\)

\(=1+C_{2n+1}^1+...+C_{2n+1}^n+C_{2n+1}^n+...+C_{2n+1}^1+1\)

\(=2\left(1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\right)\)

\(\Rightarrow2^{2n}-1=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\)

\(\Rightarrow2^{2n-1}=2^{20}-1\Rightarrow2n=20\Rightarrow n=10\)

Khai triển: \(\left(x^2-x-1\right)^{10}\)

\(\left\{{}\begin{matrix}k_0+k_1+k_2=10\\k_1+2k_2=6\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_1;k_2\right)=\left(4;6;0\right);\left(5;4;1\right);\left(6;2;2\right);\left(7;0;3\right)\)

Hệ số của \(x^6:\)

\(\frac{10!}{4!.6!}+\frac{10!}{5!.4!}.\left(-1\right)^5+\frac{10!}{6!.2!.2!}+\frac{10!}{7!.3!}.\left(-1\right)^7\)