Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)
Bạn tự lm tiếp.AD HĐT số (7)
2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)
AD HĐT số (7).Tự lm tiếp
3)\(x^6+1=\left(x^2\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
4)\(x^9+1=\left(x^3\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)
AD HĐT số (3).Tự lm tiếp
6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
AD HĐT số (4)
7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)
AD HĐT số (5)
8)\(27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
AD HĐT số (5)
a, \(x^3+8=x^3+2x^2-2x^2-4x+4x+8\)
\(=x^2.\left(x+2\right)-2x.\left(x+2\right)+4.\left(x+2\right)\)
\(=\left(x+2\right).\left(x^2-2x+4\right)\)
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
a) \(x^2-6x+9=\left(x-3\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(\left(x-3\right)^2-16=\left(x-3-4\right)\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)
d) \(64+16x+x^2=\left(x+8\right)^2\)
e) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
f) mk chỉnh đề
\(8-36x+54x^2-27x^3=\left(2-3x\right)^3\)
g) \(8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Trả lời:
a, \(\left(3\sqrt{x}-y\right)\left(3\sqrt{x}+y\right)=\left(3\sqrt{x}\right)^2-y^2=9x-y^2\)
b, \(\left(\sqrt{x}-2\sqrt{y}\right)\left(2\sqrt{y}+\sqrt{x}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+2\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(2\sqrt{y}\right)^2\)
\(=x-4y\)
1) \(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\)
\(\left(a+b\sqrt{3}\right)^2=a^2+2\sqrt{3}ab+3b^2\)
2) \(4a^2+4a+1=\left(2a+1\right)^2\)
\(9x^2-6x+1=\left(3x-1\right)^2\)
\(\dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{1}{3}y\right)^2\)
Ta có
1 9 x 2 - 1 64 y 2 = x 3 2 - y 8 2 = x 3 - y 8 x 3 + y 8
Đáp án cần chọn là: D