Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-1\right)\left(x-3\right)=x^2-3x-x+3=x^2-4x+3\)
Vậy chọn D
Kết quả phép tính (x3 + 8) : (x + 2)
(A) x2 + 4 (B) (x+2)2
(C) x2 + 2x + 4 (D) x2 - 2x +4
? đáp án nào đúng vậy
\(\left(2x-3\right)\left(x-2\right)\)
\(=2x^2-4x-3x-6\)
\(=2x^2-7x-6\)
\(\left(x+3\right)^2\)
\(=x^2+2x.3+3^2\)
\(=x^2+6x+9\)
a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)
b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)
c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)
d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)
\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)
mình bày cách làm thôi nhé ... còn lại bạn tự làm :)
a) Đặt x2 + 2x = t
pt <=> t2 - 3t + 2 = 0
<=> ( t - 1 )( t - 2 ) = 0
<=> ( x2 + 2x - 1 )( x2 + 2x - 2 ) = 0
nghiệm hơi xấu nên không giải :v
b) ( x - 2 )4 + ( x + 2 )4 = 32 ( cái này khai triển ra luôn )
<=> x4 - 8x3 + 24x2 - 32x + 16 + x4 + 8x3 + 24x2 + 32x + 16 - 32 = 0
<=> 2x4 + 48x2 = 0
<=> 2x2( x2 + 24 ) = 0
<=> x = 0 ( đến đây bạn tự hiểu nhá :D )
c) ( x + 3 )4 + ( x + 5 )4 = 16
Đặt t = x + 4
pt <=> ( t - 1 )4 + ( t + 1 )4 - 16 = 0
khai triển rồi rút gọn đặt ẩn phụ là ra ( chắc bạn học đến rồi ha )
d) ( 6 - x )4 + ( 8 - x )4 = 80
Đặt t = 7 - x
pt <=> ( t - 1 )4 + ( t + 1 )4 - 80 = 0
tương tự như ý d)
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
B