Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a: \(=\dfrac{12xy^3z^4}{24x^2y^3z^3}=\dfrac{1}{2}\cdot\dfrac{1}{x}\cdot z=\dfrac{z}{2x}\)
b: \(=\dfrac{3\left(x-2\right)}{6x\left(x-2\right)}=\dfrac{1}{2x}\)
2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
6x(x-4)=0
TH1: 6x=0 TH2: x-4=0
x=0 x=4
Vậy x\(\in\){0;4}
2. a. \(4x\left(x-1\right)-6x+6\)
\(=4x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(4x-6\right)\left(x-1\right)\)
3. a. \(6x^2-24x=0\)
\(\Leftrightarrow6x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
Đkxđ : \(x\ne3;-3\)
Ta có :
\(\frac{4x^2-24x+36}{x^2-9}\)
\(=\frac{4\left(x^2-6x+9\right)}{x^2-3^2}\)
\(=\frac{4\left(x^2-2.3.x+3^2\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x-3\right)}{x+3}\)
Dễ thì tự mà làm đi ??? ( Đừng có ném gạch )
==
#Thiên_Hy
===
\(\left(x+3\right)^4-\left(x-3\right)^4-24x^3\)
\(=x^4+12x^3+54x^2+108x+81-x^4+12x^3-54x^2+108x-81-24x^3\)
\(=24x^3+216x-24x^3\)
\(=216x\)
\(6x\left(4x-5\right)-24x^2=24x^2-30x-24x^2=-30x\)
ý B