Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, | x + y - 8 | + | x - y - 18 | = 0
Suy ra : | x + y - 8 | = 0 hoặc | x - y - 18 | = 0
Nếu | x + y - 8 | = 0 Nếu | x - y - 18 | = 0
=> x + y - 8 = 0 => x - y - 18 = 0
x + y = 8 ( 1 ) x - y = 18 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : x = 13 và y = -5
b, | x + y - 7 | + | xy - 10 | \(\le\)0
Vì | x + y - 7 | \(\ge\)0; | xy - 10 | \(\ge\)0 nên | x + y - 7 | + | xy - 10 | \(\le\)0
Suy ra : | x + y - 7 | + | xy - 10 | \(\le\)0 <=> x + y - 7 | = 0 và | xy - 10 | = 0
| x + y - 7 | = 0 | xy - 10 | = 0
=> x + y - 7 = 0 => xy - 10 = 0
x + y = 7 ( 1) xy = 10 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : x = 5 và y = 2
c, | x - y - 5 | + 2017. | y - 3 | = 0
Vì | x - y - 5 | \(\ge\)0 ; 2017. | y - 3 | \(\ge\)0 nên | x - y - 5 | + 2017. | y - 3 | = 0
Mà | x - y - 5 | + 2017. | y - 3 | = 0 <=> | x - y - 5 | = 0 ; | y - 3 | = 0
| x - y - 5 | = 0 | y - 3 | = 0
=> x - y - 5 = 0 => y - 3 = 0
x - y = 5 ( 1 ) y = 3 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : x = 8 và y = 3
a) Do \(\left|x+y-8\right|\ge0;\left|x-y-18\right|\ge0\forall x,y\)
nên \(\left|x+y-8\right|+\left|x-y-18\right|=0\Leftrightarrow\hept{\begin{cases}\left|x+y-8\right|=0\\\left|x-y-18\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=8\\x-y=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=13\\y=-5\end{cases}}\)
b) Do \(\left|x+y-7\right|\ge0;\left|xy-10\right|\ge0\forall x,y\)
nên \(\left|x+y-7\right|+\left|xy-10\right|\le0\Leftrightarrow\hept{\begin{cases}\left|x+y-7\right|=0\\\left|xy-10\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=7\\xy=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=5\\x=5;y=2\end{cases}}\)
c) Do \(\left|x-y-5\right|\ge0;\left|y-3\right|\ge0\forall x,y\)
nên \(\left|x-y-5\right|+2017.\left|y-3\right|=0\Leftrightarrow\hept{\begin{cases}\left|x-y-5\right|=0\\\left|y-3\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=5\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)
a) \(\left|x+2\right|-x=2\)
\(\Leftrightarrow\left|x+2\right|=x+2\)
khi \(x\ge-2\), biểu thức có dạng:
\(\orbr{\begin{cases}x+2=x+2\\x+2=-x-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
\(\Rightarrow\)vô số nghiệm hoặc \(x=-2\)( thỏa mãn ĐK)
vậy x={-2;-1;0;1;2;3;...}
b) \(\left|x-3\right|+x-3=0\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
khi \(x\ge3\), biểu thức có dạng:
\(\orbr{\begin{cases}x-3=3-x\\x-3=x-3\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0x=0\end{cases}}}\)
\(\Rightarrow\)vô số nghiệm hoặc x=3 ( thỏa mãn ĐK)
vậy x={3;4;5;6;7...}
c) \(\left|x-5\right|+x-8=6\)
\(\Leftrightarrow\left|x-5\right|=14-x\)
khi \(x\le14\), biểu thức có dạng:
\(\orbr{\begin{cases}x-5=14-x\\x-5=x-14\end{cases}\Rightarrow\orbr{\begin{cases}2x=19\\0x=-9\end{cases}}}\)
\(\Rightarrow x=\frac{19}{2}\)( thỏa mãn ĐK) hoặc vô nghiệm
vậy \(x=\frac{19}{2}\)
Bài giải
Ta có :
\(\left|x+5\right|+2\left|3-y\right|=0\)
Khi \(\hept{\begin{cases}\left|x+5\right|=0\\2\left|3-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+5=0\\\left|3-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\3-y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}\)
Vậy \(x=-5\text{ ; }y=3\)
Ta có: Ix+5I >=0 với mọi x thuộc Z
2I3-yI >=0 với mọi y thuộc Z
=> Ix+5I+2I3-yI >= 0 với mọi x,y thuộc Z
Mà Ix+5I+2I3-yI=0
\(\Leftrightarrow\hept{\begin{cases}|x+5|=0\\2|3-y|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+5=0\\3-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=3\end{cases}}}\)