K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

Cộng 2 vế ta đc : \(\left(\sqrt{2}+\sqrt{3}\right)x=2+\sqrt{6}\Rightarrow x=\sqrt{2}\)

Thay x = \(\sqrt{2}\) vào \(\sqrt{2}\) x + y = 2 ta đc:

\(\sqrt{2}.\sqrt{2}+y=2\Rightarrow2+y=2\Rightarrow y=0\)

Vậy (x;y) = (\(\sqrt{2}\) ; 0)

 

3 tháng 1 2016

\(\int^{\sqrt{3}x-y=\sqrt{6}}_{\left(\sqrt{3}x-y\right)+\left(\sqrt{2}x+y\right)=\sqrt{6}+2}\Leftrightarrow\int^{\sqrt{3}x-y=\sqrt{6}}_{\left(\sqrt{3}+\sqrt{2}\right)x=\sqrt{6}+2}\Leftrightarrow\int^{y=0}_{x=\sqrt{2}}\)

Vậy \(\left(x;y\right)=\left(\sqrt{2};0\right)\)

7 tháng 1 2016

Có: \(\left(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\right)^2\ge\left(x^2+12-x^2\right)\left(12-y+y\right)=12^2\)(Bunhiacopxki)
\(\Rightarrow x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\ge12\)
Dấu "=" xảy ra <=> \(\frac{x}{\sqrt{12-y}}=\frac{\sqrt{12-x^2}}{\sqrt{y}}\)\(\Leftrightarrow\frac{x^2}{12-y}=\frac{12-x^2}{y}=\frac{x^2+12-x^2}{12-y+y}=1\)
\(\Rightarrow x^2=12-y\Rightarrow y=12-x^2\)
Có :\(x^3-8x-1=2\sqrt{12-x^2-2}=2\sqrt{10-x^2}\)


 

9 tháng 12 2015

Ê Ngọc Liên bài bạn làm thế này nhé

Với n=5k

=>\(n^2+n+6=\left(5k\right)^2+5k+6=25k^2+5k+5+1\) không chia hết cho 5(vì 1 ko chia hết cho 5)

Với n=5k+1

\(n^2+n+6=\left(5k+1\right)^2+5k+1+6=25k^2+10k+1+5k+1+6\)

\(25k^2+15k+5+3\) không chia hết cho 5

Với n=5k+2

\(n^2+n+6=25k^2+25k+5+7\)không chia hết cho 5 

Các TH còn lại làm tương tự nha

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Ta có: \(\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\x+\left(\sqrt{3}+\sqrt{2}\right)y=\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0y=-2\sqrt{2}+2\sqrt{3}\left(vôlý\right)\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

Vậy: Hệ phương trình vô nghiệm

17 tháng 2 2021

cồng kềnh 1 tí :D \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\left(1\right)\\x\sqrt{6}-y\sqrt{2}=2\left(2\right)\end{matrix}\right.\)

Từ (1) => \(y=2\sqrt{2}-5x\sqrt{3}\) thay vào (2) ta được:

\(x\sqrt{6}-\left(2\sqrt{2}-5x\sqrt{3}\right)\sqrt{2}=2\)

\(\Leftrightarrow6x\sqrt{6}-4=2\Leftrightarrow6x\sqrt{6}=6\)

\(\Leftrightarrow x=\dfrac{\sqrt{6}}{6}\) \(\Rightarrow y=2\sqrt{2}-5.\dfrac{\sqrt{6}}{6}.\sqrt{3}=\dfrac{-\sqrt{2}}{2}\)

Vậy hệ phương trình trên có tập nghiệm S={......}

2 tháng 1 2016

a) x=3

   y=\(\frac{3}{2}\)

b) x=0,4082482905

   y=-0,7071067812

Trình bày em không biết vì em mới học lớp 7. kết quả đó là của máy tính fx-570ES PLUS ra

2 tháng 1 2016

1/2x-1/3y=1

5x-8y=3

Ta sẽ biến đổi để đưa hệ về các hệ số của cùng 1 ẩn .ta nhan hệ 1 với 5 va hệ 2 voi 1/2.ta có hệ mới

5/2x-1/3y=1

5/2x-8y=3

=> dùng phương pháp thế rút x theo y rồi ra

x:=3;

y:=3/2;

b)

xxta có hệ

5\(\sqrt{3}\)x+y=2\(\sqrt{2}\)

\(\sqrt{6}\)x-\(\sqrt{2}\)y=2;

=>tiếp tục dùng phương pháp thế rút y theo x như phần a

ta có:x=0,4082482950

         y=-0,7071067812

 

31 tháng 12 2023

a: \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)

=>\(\sqrt{\left(x+3\right)^2}=\sqrt{\left(3+\sqrt{2}\right)^2}\)

=>\(\left|x+3\right|=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)

=>\(\left[{}\begin{matrix}x+3=3+\sqrt{2}\\x+3=-3-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-6-\sqrt{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-2y=8\\x+2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y+x+2y=8-3\\2x-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=5\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\cdot1-4=-2\end{matrix}\right.\)