Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Call the smallest digit a => 3-digit number a, 2a, 3a with 3a ≤ 9 => a ≤ 3. Find the number divisible by 18, which is divisible by 9, so (a + 2a + 3a) = 6a is divisible by 9 => a is divisible by 3, so a = 3 => 3 digits are 3, 6, 9
The number to find is even by dividing by 2, so the last digit is 6
=> 396 or 936
Call the smallest digit a => 3-digit number a, 2a, 3a with 3a ≤ 9 => a ≤ 3. Find the number divisible by 18, which is divisible by 9, so (a + 2a + 3a) = 6a is divisible by 9 => a is divisible by 3, so a = 3 => 3 digits are 3, 6, 9
The number to find is even by dividing by 2, so the last digit is 6
=> 396 or 936
the length of the diagonal is 26 centimeters
k cho mình nha cảm ơn
\(x^2-1=\left(x+1\right)\left(x-1\right)\)
\(f\left(x\right)=x^4+ax^3+bf\left(x\right)=x^4+ax^3+b\)
Theo định lí Bezout, ta có :
\(f\left(1\right)=1+ax^3+b=0=>a+b=-1\)
\(f\left(-1\right)=1-a+b=0=>-a+b=-1\)
Giải hệ phương trình, ta có:
a+b=-1
-a+b=-1
=> a=0;b=-1
=>a+b=-1