Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=2^12.3^5-(2^2)^6.(3^2)^2/2^12.3^6+(2^3)^4.3^5
=2^12.3^5-2^12.3^4/2^12.3^6+2^12.3^5
=2^12.3^4.(3-1)/2^12.3^4.(3^2+3)
=2/12
=1/6
CẬU XEM LẠI GIÙM MÌNH NHÉ!
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)
\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)
\(=5x^4+2x^2+\dfrac{3}{16}\)
2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)
a) \(\frac{25^5.2^{10}}{20^4.5^4}=\frac{\left(5^2\right)^5.2^{10}}{100^4}=\frac{5^{10}.2^{10}}{\left(10^2\right)^4}=\frac{10^{10}}{10^8}=10^2=100\)
b) \(\frac{2^3.5^2.7^2.3^7}{49.5^3.3^6.11}=\frac{2^3.5^2.7^2.3^7}{7^2.5^3.3^6.11}=\frac{2^3.3}{5.11}=\frac{8.3}{55}=\frac{24}{55}\)
\(\frac{8^2.4^3}{16^3}=\frac{\left(2^3\right)^2.\left(2^2\right)^3}{\left(2^4\right)^3}=\frac{2^6.2^6}{2^{12}}=1\)
\(\frac{25^2.125}{5^3.5^4}=\frac{\left(5^2\right)^2.5^3}{5^4.5^3}=\frac{5^4.5^3}{5^4.5^3}=1\)
\(\frac{8^2.4^3}{16^3}=\frac{\left(2^3\right)^2.\left(2^2\right)^3}{\left(2^4\right)^3}=\frac{2^6.2^6}{2^{12}}=1\)
\(\frac{25^2.125}{5^3.5^4}=\frac{\left(5^2\right)^2.5^3}{5^3.5^4}=\frac{5^4.5^3}{5^3.5^4}=1\)