Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=6\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)
\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)
\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)
Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)
Vậy \(x=y=z=2\)
Chúc bạn học tốt ~
ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)
Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:
\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
Thay \(x+y+z=6\) và ta có:
\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)
Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)
Từ (*) suy ra x=y=z=2
Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1
Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3
vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz
Dấu = xảy ra khi x =1, y =2, z = 3
Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)
Lần sau bạn nhớ gửi đường dẫn câu hỏi nhé:
vào tìm câu hỏi qua Thông kế--> câu hỏi khác--> mỏi và ngại lắm.
\(x+y+z=1\left(1\right)\)
\(\frac{x}{z+z}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}=1\left(2\right)\)
Lấy (1) nhân (2)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{z+y}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y\right)\frac{z}{\left(x+y\right)}+\left(y+z\right).\frac{x}{\left(z+y\right)}+\left(x+z\right).\frac{y}{\left(z+x\right)}=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y+z\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+1=1\)
\(\Rightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)=0\)
Chưa thạo bước 2 nhân phân phối bt hết ra rồi ghép lại
(mình hay lang thang xem lời giải => thấy cách nhân ghép luôn đỡ mỏi)
\(\frac{x^2}{3}+\frac{y^2}{4}+\frac{z^2}{5}=\frac{x^2+y^2+z^2}{6}\)
\(\Leftrightarrow\)\(\frac{x^2}{3}+\frac{y^2}{4}+\frac{z^2}{5}-\frac{x^2}{6}-\frac{y^2}{6}-\frac{z^2}{6}=0\)
\(\Leftrightarrow\)\(\frac{1}{6}x^2+\frac{1}{12}y^2+\frac{1}{30}z^2=0\)
\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)
\(\Leftrightarrow\)\(x=y=z=0\)