Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\frac{3}{2}=1\)
\(\Leftrightarrow3x=-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)
Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x=99\)
a) => ( x + 1/2 ) . 3 = 1
=> 3x + 3/2 = 1
=> 3x = 1 - 3/2
=> 3x = -1/2
=> x = -1/2 : 3 = -1/6
\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)
=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)
=> 27x - 27 = 30x - 10
=> 27x - 30x = -10 + 27
=> -3x = 17
=> x = -17/3.
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)
Vậy \(X=\frac{147}{50}\)
( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2
( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2
90 - 5/2 : ( x + 103/50 ) = 89/2
5/2 : ( x + 103/50 ) = 90 - 89/2
5/2 : ( x + 103/50 ) = 91/2
x + 103/50 = 5/2 : 91/2
x + 103/50 = 5/91
x = 5/91 - 103/50
x = -9,123/4550
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)
\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)
Vậy x = 2019
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(B=\frac{100}{2}\)
Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
ta có 1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=17/18
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=17/18
1-1/x+1=17/18
1/x+1=1-17/18
1/x+1=1/18
suy ra: x+1=18
x=18-1
x=17
\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow a=\frac{2020}{2019}\)
=.> 1-1/2+1/2-1/3+.......+1/2019-1/2020=1/x
=>1-1/2020=1/x
=>2019/2020=1/x
=>2019x=2020
=>x=2020/2019
k nha
giúp mk lên 300sp