K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

n\(^3\)+ 23n

= n (n\(^2\)+23)

= n [(n\(^2\)-1) + 24]

= n(n-1)(n+1) + 24n

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 2, 3. Mà 2,3 là 2 số nguyên tố cùng nhau

=> n(n-1)(n+1) chia hết cho 6.

24n cũng chia hết cho 6.

Vậy n^3 + 23n chia hết cho 6 (n thuộc Z).

16 tháng 3 2020

Ta có:n-13n=(n3-n)-12n=n(n2-1)-12n=n(n-1)(n+1)-6.(2n)

Mà n(n-1)(n+1) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3\(\Rightarrow\)n(n-1)(n+1) chia hết cho 6

Lại có 6.(2n) chia hết cho 6

Suy ra:n(n-1)(n+1)-6.(2n) chia hết cho 6

Do đó:n3-13n chia hết cho 6.

23 tháng 10 2016

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)

 

\(A=n^3-n+24n\)

\(=n\left(n-1\right)\left(n+1\right)+24n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

=>A chia hết cho 6

30 tháng 10 2018

\(n^4+2n^3-n^2-2n\)

\(=n^3\left(n+2\right)-n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3-n\right)\)

\(=n\left(n+2\right)\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy n-1; n; n+1; n+2 là 4 số liên tiếp => có 2 số chẵn => tích của 4 số chia hết cho 2

=> đpcm

12 tháng 7 2017

\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)

\(=\left(2n-1\right).4.n\left(n-1\right)\)

\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)

\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)

\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)

5 tháng 10 2017

Ta có: n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(2n+5-n-3)=n(n+1)(n+2)

Do n, n+1 và n+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2

Tổng các số hạng là: n+n+1+n+2=3n+3=3(n+1) => Luôn chia hết cho 3

=> n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(n+2) luôn chia hết cho 6

12 tháng 7 2018

Ta có:

 n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(2n + 5 - n - 3) = n(n + 1)(n + 2)

Do n, n + 1 và n + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2

Tổng các số hạng là: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1) => chia hết cho 3

=>  n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(n + 2) => chia hết cho 6.

Vậy n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.

30 tháng 12 2017

Ta có:

\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp (n\(\in Z\))

nên \(A⋮2.3=6\) (1)Do (2,3)=1

Ta cũng có:

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

\(\Rightarrow A⋮5\) (2)

Từ (1); (2) \(\Rightarrow A⋮6.5=30\) Do (6,5)=1

30 tháng 12 2017

\(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2+1\right)\left(n^2-1\right)\)

\(=n\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)

\(=n\left(n^2+5-4\right)\left(n-1\right)\left(n+1\right)⋮6\)(tích 3 số liên tiếp)

\(=n\left(n^2-4\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(đpcm\right)\)(tích 5 số liên tiếp và 1 tích có thừa số 5)

\(\Rightarrow A⋮30\)

18 tháng 9 2019

1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

15 tháng 3 2020

\(n^5-n=n\cdot\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

TH1: n = 5k => đpcm
TH2: n = 5k+1 => n-1 chia hết cho 5 => đpcm

TH3: n = 5k + 2 => n2+1=(5k+2)2+1=25k2+20k+5=5(5k2+4k+1) chia hết cho 5 => đpcm

TH4: n = 5k + 3 => n2+1=(5k+3)2+1=25k2+30k+10=5(5k2+6k+2) chia hết cho 5 => đpcm
TH5: n = 5k + 4 => n+1 chia hết cho 5 => đpcm

Vậy với n thuộc Z thì n5-n luôn chia hết cho 5