Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Giả sử có hữu hạn số nguyên tố là a1,a2,a3,...,an trong đó an là số nguyên tố lớn nhất trong tất cả các số nguyên tố.
Xét số A= a1.a2.a3....an chia hết cho mỗi số nguyên tố ap (với 1<=p<=n)
=> số A+1 chia cho mỗi số ap đều dư 1.(1)
Lại có A+1 > an => A+1 là hợp số =>A+1 chia hết cho 1 trong các số nguyên tố ap,mâu thuẫn với (1).
=> điều giả sử là sai=> có vô số số nguyên tố
2/ ko biết vì học lớp 6
3/
Trong toán học, số vô tỉ là số thực không phải là số hữu tỷ, nghĩa là không thể biểu diễn được dưới dạng tỉ số a/b (a và b là các số nguyên).Tập hợp số vô tỉ kí hiệu là \(\mathbb I\)
Ví dụ:
- Số thập phân vô hạn có chu kỳ thay đổi: 0,1010010001000010000010000001...
- Số = 1,41421 35623 73095 04880 16887 24209 7...
- Số pi = 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679...
- Số lôgarít tự nhiên e = 2,71828 18284 59045 23536...
vì không có hữu hạn số tự nhiên nên ko có hữu hạn số nguyên tố
a2+b2+c2\(\ge\) ab + bc + ca
\(\Leftrightarrow a^2+b^2+c^2-ab-ba-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (BĐT đúng)
Do đó \(a^2+b^2+c^2\ge ab+bc+ac\) là BĐT đúng.
a2 + b2 + c2 ≥ ab + bc + ca
<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Dấu "=" xảy ra <=> a = b = c
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
1) \(2VT=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ac=2\left(ab+bc+ac\right)=2VP\)
\(VT\ge VP\)
2) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Ta thấy trong 3 số thực dương a;b;c luôn tồn tại hai số cùng lớn hơn hay nhỏ hơn hoặc bằng 1.Giả sử 2 số đó là b,c
Khi đó \(\left(b-1\right)\left(c-1\right)\ge0\)
\(\Leftrightarrow bc\ge b+c-1\ge0\)\(\Rightarrow2abc\ge2ab+2ac-2a\)
Do đó \(a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ab+2ac-2a+1\)
Nên bây giờ ta chứng minh :\(a^2+b^2+c^2+2ab+2ac-2a+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=c=1