Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BH ^ AC và CM ^ AC Þ BH//CM
Tương tự => CH//BM
=> BHCM là hình bình hành
b, Chứng minh BNHC là hình bình hành
=> NH//BC
=> AH ^ NH => A H M ^ = 90 0
Mà A B N ^ = 90 0 => Tứ giác AHBN nội tiếp
c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng
d, A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN
AN = AM = 2R, AB = R 3 => A m B ⏜ = 120 0
S A O B = 1 2 S A B M = R 2 3 4
S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3
=> S cần tìm = 2 S A m B ⏜ = R 2 6 4 π - 3 3
Kẻ đường phân giác CJ của góc ACP cắt PE tại R mà không nói rõ J thuộc đương thẳng nào? đề khó hỉu quá anh(chị) ơi
a) Do P đối xứng B qua AC \(\Rightarrow\) \(\Delta\)APC đối xứng \(\Delta\)ABC qua AC \(\Rightarrow\) CR đối xứng CS qua AC ( vì CS là phân giác góc ACB) \(\Leftrightarrow\) R đối xứng S qua AC \(\Leftrightarrow\) RS\(\perp\)AC mà PB\(\perp\)AC \(\Leftrightarrow\) RS//PB
b) Do K đối xứng P qua CJ \(\Rightarrow\) CK đối xứng CP qua CJ \(\Leftrightarrow\) góc JCK = góc JCP = góc JCA ( vì CJ là phân giác góc ACP) \(\Rightarrow\)tia CK trùng tia CA \(\Rightarrow\) C; A; K thẳng hàng (1)
Cũng Do K đối xứng P qua CJ hay CR nên từ (1) \(\Rightarrow\) góc AKR = góc CKR = góc CPR = góc APR (2) ( vì PR là phân giác góc APC do BS là phân giác góc ABC vì \(\Delta\)APC đối xứng \(\Delta\)ABC qua AC)
Từ (2) \(\Rightarrow\) AKPR nội tiếp \(\Rightarrow\) AKBS nội tiếp ( vì đối xứng)
c) Gọi M là giao điểm của 2 tiếp tuyến tại K,P của (O) ⇒\(\Rightarrow\)M \(\in\) trung trực của KP (3)
Do K đối xứng P qua CJ \(\Leftrightarrow\) CJ là trung trực của KP (4)
Từ (3) và (4) ⇒ 2 tiếp tuyến tại K,P của (O) và CJ đồng quy tại M
ĐS:..................( đến đây thôi vì đề hơi kì xíu)
(hai góc đối đỉnh)
⇒ B, O, I, H, C cùng thuộc đường tròn chứa cung 120º dựng trên đoạn BC.
cách làm thôi nha
GỌi D là gia điểm của AM zới đường tròn (O)
CM các tam giác DBI . DBM cân
=> DI=DM
DO đó OD là đường trung bình của tam giác MIK
=> KM=2OD=2R
Zậy M thuộc đường tròn (K;2R)
tương tự đối zới các điểm N , P