K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

Đáp án D

Gọi H là hình chiếu của M lên (Oyz), suy ra H(0;6;1).

Do M' đối xứng với M qua (Oyz) nên MM' nhận H làm trung điểm, suy ra M'(2;6;1).

Vậy T=7.2-2.6+2017.1-1=2018.

3 tháng 3 2019

Chọn A

Vectơ pháp tuyến của (P) và (Q) lần lượt là

Gọi φ là góc tạo bởi hai mặt phẳng (P) và (Q)  thì 00 φ ≤ 900

Để (P) và (Q) tạo với nhau một góc nhỏ nhất thì cosφ lớn nhất  nhỏ nhất.

 nên giá trị lớn nhất của là  khi m = 1/2

Vậy H (-2017; 1; 1) (Q)

29 tháng 6 2017

Đáp án B

Phương pháp:

- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Cách giải:

( S ) :   x - 1 2 + y - 2 2 + z - 3 2 = 25  có tâm  I(1;2;3) và bán kính  R = 5

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất  <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S)

Ta có 

Ta có:

(*) có nghiệm 

Khi đó T =a+b+c =2-2c+2+c=4-1 =3

25 tháng 2 2018

Đáp án A

Mặt cầu (S)  tâm I(-1;2;1)  bán kính R=√9=3.

21 tháng 7 2019

Đáp án C.

28 tháng 1 2018

Chọn C

Gọi tâm mặt cầu là: I(x;y;0)

I A = I B I A = I C ⇔ ( x - 1 ) 2 + ( y - 2 ) 2 + 4 2 = ( x - 1 ) 2 + ( y + 3 ) + 1 2 ( x - 1 ) 2 + ( y - 2 ) 2 + 4 2 = ( x - 2 ) 2 + ( y - 2 ) 2 + 3 2 ⇔     ( y - 2 ) 2 + 4 2 = ( y + 3 ) 2 + 1 2 x 2 - 2 x + 1 + 16 = x 2 - 4 x + 4 + 9 ⇔ 10 y = 10 2 x = - 4 ⇔ x = - 2 y = 1 ⇒ i = 2 R = 2 ( - 3 ) 2 + ( - 1 ) 2 + 4 2 = 2 26

1 tháng 11 2019

Đáp án B.

26 tháng 1 2019

Đáp án C

 Ta có:  M ∈ ( P )

  O M 2 = 6 < R 2 = 9 ⇒ M nằm trong mặt cầu  ⇒ (P) cắt mặt cầu thành 1 hình tròn (C)

Gọi H là tâm hình tròn (C)

Để AB nhỏ nhất thì   A B ⊥ H M

Vì 

O là tâm mặt cầu và O (0; 0; 0)

Phương trình OH:  x = t y = t z = t

 là một vecto chỉ phương của AB

Chọn   là vecto chỉ phương của AB

Thì 

27 tháng 8 2018

Đáp án A

Vì mặt phẳng (P) đi qua A, B nên

3 a - 2 b + 6 c - 2 = 0 b = 2 ⇔ a = 2 - 2 c b = 2 ⇒ ( P ) :   ( 2 - 2 c ) x + 2 y + c z = 0

Khoảng cách từ tâm I (1;2;3) của (S) đến (P) là:

d(I,(P))= ( 2 - 2 c ) + 2 . 2 + c . 3 - 2 ( 2 - 2 c ) 2 + 2 2 + c 2 = c + 4 5 c 2 - 8 c + 8

Khi đó bán kính của đường tròn giao tuyến là: 

r= 25 - ( c + 4 ) 2 5 c 2 - 8 c + 8 = 124 c 2 - 208 c + 184 5 c 2 - 8 c + 8

Để r đạt giá trị nhỏ nhất thì hàm số

f(t)= 124 t 2 - 208 t + 184 5 t 2 - 8 t + 8 trên [1;+ ∞ ) phải nhỏ nhất

Ta có: f'(t)= 48 t 2 + 144 t - 192 ( 5 t 2 - 8 t + 8 ) 2 ,

f'(t)=0 ⇔

Khi đó hàm số đạt giá trị nhỏ nhất tại t=1 ⇒ c=1

Ta có: T=a+b+c=2-2c+2=4-c=3