K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

9 tháng 4 2019

Phương pháp

Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp

 Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp

15 tháng 1 2018

Chọn đáp án C

2 tháng 3 2019

Đáp án A.

1. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

Ta có

  C B ⊥ A B , C B ⊥ S A , A B ∩ S A = A ⇒ C B ⊥ S A B ⇒ C B ⊥ S B ⇒ Δ S B C    

vuông tại B.

Lại có  

C D ⊥ A D , C D ⊥ S A , A D ∩ S A = A ⇒ C D ⊥ S A D ⇒ C D ⊥ S D

  ⇒ Δ S D C vuông tại D.

Mặt khác   S A ⊥ A B C D ⇒ S A ⊥ A C ⇒ Δ S A C vuông tại A.

Gọi I là trung điểm của SC. Các tam giác: Δ S A C , Δ S B C , Δ S D C  lần lượt vuông tại các đỉnh A, B và D nên I S = I A = I B = I C = I D = 1 2 S C . Vậy mặt cầu ngoại tiếp hình chóp S.ABCD có tâm I, bán kính  R = 1 2 S C

2. Tính diện tích mặt cầu

Ta có  S C , A B C D ^ = S C , A C ^ = S C A ^ = 60 °

Do Δ A D C  vuông tại A nên   S ?A C = 1 2 A D . C D ⇔ A D = 2 S Δ A D C C D = a 2 3 a = a 3

⇒ A C = A D 2 + C D 2 = a 3 2 + a 2 = 2 a

Mà  A C = S C . cos S C A ^ ⇒ S C = 2 a cos 60 ° = 4 a

Vậy bán kính của mặt cầu ngoại tiếp hình chóp S.ABCD là R = S C 2 = 4 a 2 = 2 a  và diện tích mặt cầu là S = 4 π R 2 = 4 π . 2 a 2 = 16 π a 2  (đvdt).

7 tháng 1 2018

Đáp án A

Tam giác ADC vuông tại D  ⇒ S Δ A D C = 1 2 . A D . C D = a 2 3 2

  ⇒ C D = a 3 ⇒ A C = A D 2 + C D 2 = a 2 + a 3 2 = 2 a .

Vì tứ giác ABCD có A B C ⏜ = A D C ⏜ = 90 ∘ ⇒ A B C D  là tứ giác nội tiếp đường tròn tâm O với O là trung điểm của AC  ⇒ R A B C D = A C 2 = a .

Và  S A ⊥ A B C D ⇒ S C ; A B C D ⏜ = S C ; A C ⏜ = S C A ⏜ = 60 ∘

Tam giác SAC vuông tại A ⇒ tan S C A ⏜ = S A A C ⇒ S A = 2 a 3 .

Suy ra bán kính mặt cầu cần tính là:

R = R 2 A B C D + S A 2 4 = 2 a ⇒ S m c = 16 π a 2 .

14 tháng 9 2017

Gọi M là trung điểm AB, do tam giác SAB vuông tại S nên MS = MA = MB

Gọi H là hình chiếu của S trên AB. Từ giả thiết suy ra 

Ta có  nên  là trục của tam giác SAB, suy ra OA = OB = OS (2)

Từ  (1) và (2) ta có OS = OA = OB = OC = OD. 

Vậy O là tâm mặt cầu ngoại tiếp khối chóp S.ABCD bán kính 

Chọn B.

24 tháng 7 2019

Đáp án A

Ta có SC là đường kính của mặt cầu ngoại tiếp hình chóp S.ABCD vì các góc ở đỉnh A, B, D đều nhìn SC dưới góc 90 độ 

8 tháng 2 2019

12 tháng 9 2018

Vì ABCD là hình vuông nên OA = OB = OC (1)

Dễ dàng chứng minh được A H ⊥ H C  nên tam giác AHC vuông tại H và có O là trung điểm cạnh huyền AC nên suy ra OH = OC

Từ (1) và (2) suy ra