Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\xz=z+x+2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=2\left(1\right)\\\left(y-1\right)\left(z-1\right)=6\left(2\right)\\\left(x-1\right)\left(z-1\right)=3\left(3\right)\end{cases}}\)
Nhân (1) , (2) , (3) theo vế được : \(\left[\left(x-1\right)\left(y-1\right)\left(z-1\right)\right]^2=36\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(y-1\right)\left(z-1\right)=6\\\left(x-1\right)\left(y-1\right)\left(z-1\right)=-6\end{cases}}\)
- Nếu (x-1)(y-1)(z-1) = 6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
- Nếu (x-1)(y-1)(z-1) = -6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=0\\y=-1\\z=-2\end{cases}}\)
Nhân cả 2 vế của (2) với 2 ta được: \(2xy+2yx-2xz=14\left(4\right)\)
Lấy (3) trừ (4) ta được: \(x^2+y^2+z^2-2xy-2yx-2xz=0\)
\(\Leftrightarrow\left(x-y+z\right)^2=0\)
\(\Leftrightarrow y=x+z\)
Thay vào (1) ta được: \(y=x+z=3\)
Khi đó ta có hệ: \(\hept{\begin{cases}x+z=3\\x^2+y^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+z=3\\xz=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\z=1\end{cases}}\)
Vậy hệ đã cho có nghiệm: \(\left(1;3;2\right);\left(2;3;1\right)\)
Nhân 2 vế của (2) cho 2
2xy+2yz-xz=(-1).2
Why? bằng 14?
thế mà vẫn có người cho đúng
cho mình , mình trả lời cho
Trả lời :
Bn Nguyễn Quyết Thắng trả lời luôn đi, nếu ko trả lời đc thì ko đc bình luận linh tinh nhé !
- Hok tốt !
^_^