K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3

thế 18y3 từ phương trình (1) vào ta được

8x3y3-72x2y2-108xy+27=0

<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)

thay vào (1) ta tìm được x,y

=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)

vậy hệ đã cho có nghiệm

\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)

18 tháng 1 2017

\(\hept{\begin{cases}x^3+y^3=2\\xy\left(x+y\right)=2\end{cases}}\)

Trừ cho nhau có nghiệm

\(\left(x+y\right)\left[\left(x^2-xy+y^2\right)-xy\right]=0\)

\(\orbr{\begin{cases}x+y=0\left(loai\right)\\\left(x-y\right)^2=0\Rightarrow x=y\end{cases}}\)\(2x^3=2\Rightarrow x=1\) Kết luận có nghiệm x=y=1

Dùng cái đầu đi ạ

27 tháng 1 2019

\(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3+y^3=9\\3x^2+6y^2=3x+12y\end{cases}}\)

Trừ 2 vế của pt cho nhau ta được

\(x^3-3x^2+y^3-6x^2=9-3x-12y\)

\(\Leftrightarrow\left(x-1\right)^3=\left(2-y\right)^3\)

\(\Leftrightarrow x-1=2-y\)

\(\Leftrightarrow x=3-y\)

Thế vào một trong 2 pt ban đầu sẽ tìm đc x ; y  

28 tháng 1 2019

\(\hept{\begin{cases}3x^3+5y^3-2xy=6\\2x^3+3y^3+3xy=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y^3=13xy-12\\x^3=22-21xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3y^3+\left(13xy-12\right)\left(21xy-22\right)=0\\x^3=22-21xy\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3=22-21xy\\x^3y^3+273x^2y^2-538xy+264=0\left(1\right)\end{cases}}\)

Giải (1) : \(x^3y^3+273x^2y^2-538xy+264=0\)

Pt này có 1 nghiệm là 1 , 2 nghiệm còn lại xấu quá :( \(-137\pm\sqrt{19033}\) nên mk ko làm nx , đại khái hướng làm là như vậy

Tìm đc xy rồi thay vào x3 = 22 - 21xy sẽ tìm đc x -> y

23 tháng 10 2021

a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)

Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm

23 tháng 10 2021

b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)

Hệ này cũng vô nghiệm

7 tháng 1 2018

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

7 tháng 1 2018

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)