K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a)Ta có: DN và DB là hai tiếp tuyến cắt nhau tại D ⇒ DN = DB

CA và CN là hai tiếp tuyến cắt nhau tại C ⇒ CA = CN

Khi đó: DB + CA = DN + CN = DC

Mặt khác OC và OD lần lượt là hai phân giác của hai góc ∠(AON) và ∠(BON) kề bù nên

∠(COD) = 90 0

Trong tam giác vuông COD có ON là đường cao nên:

DN.CN = ON 2  = R 2

Hay AC.BD = R 2  (không đổi)

12 tháng 8 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

c)Ta có: OA = ON (bằng R)

CA = CN (tính chất hai tiếp tuyến cắt nhau)

Do đó OC là đường trung trực của AN. Gọi H là giao điểm của OC và AN. Xét tam giác vuông CAO có AH là đường cao nên:

Đề kiểm tra Toán 9 | Đề thi Toán 9

9 tháng 10 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Gọi I là tâm của đường tròn đường kính CD.

Tứ giác CABD là hình thang vuông (AC ⊥ AB;BD ⊥ AB) có OI là đường trung bình

⇒ OI // AC ; mà AC ⊥ AB ⇒ OI ⊥ AB tại O

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy AB tiếp xúc với đường tròn đường kính CD.

12 tháng 9 2017

Sử dụng tính chất hai tiếp tuyến

a, Ta có: AC = CM; BD = DM => AC+BD=CD

b,  C O A ^ = C O M ^ ; D O M ^ = D O B ^

=>  C O D ^ = 90 0

c, AC.BD = MC.MD =  M O 2 = R 2

d, Gọi I là trung điểm của CD. Sử dụng tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông và đường trung bình trong hình thang để suy ra đpcm